2020

Web AiImanac

HTTP Archive’'s annuadl
state of the web report

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Table of Contents

Introduction

Foreword iii
Partl. Puge Content

Chapter 1: CSS 1
Chapter 2: JavaScript 81
Chapter 3: Markup 111
Chapter 4: Fonts 139
Chapter 5: Media 161
Chapter 6: Third Parties 187
Part Il. User Experience

Chapter 7: SEO 203
Chapter 8: Accessibility 247
Chapter 9: Performance 275
Chapter 10: Privacy 299
Chapter 11: Security 311
Chapter 12: Mobile Web 351
Chapter 13: Capabilities 375
Chapter 14: PWA 395
Part lll. Content Publishing

Chapter 15: CMS 413
Chapter 16: Ecommerce 435
Chapter 17: Jamstack 463
Part IV. Content Distribution

Chapter 18: Page Weight 477
Chapter 19: Compression 487

2020 Web Almanac by HTTP Archive

Table of Contents

Chapter 20: Caching 499
Chapter 21: Resource Hints 537
Chapter 22: HTTP/2 553
Appendices

Methodology 577
Contributors 587

2020 Web Almanac by HTTP Archive

Foreword

Foreword

2020 has been a year many of us would like to forget. It's rare for acommunity as globalized as
ours to be affected by events as far-reaching as the COVID-19 pandemic and protests against
racial injustice. These events almost discouraged us from restarting the project this year—with
so many people physically and emotionally drained, how could we expect anyone to want to
contribute, let alone have the time and energy for it? We proceeded with caution, hoping there
was still community interest.

The purpose of this edition of the Web Almanac is not to forget about 2020, but to memorialize
it. For better or worse, this is a chapter in our history. Despite all of the external pressures of
this year, over a hundred contributors from the web community signed up and volunteered
countless hours of their time for a project dedicated to remembering 2020 and the state of the
web. Amazingly, we actually managed to expand the scope of this year’s edition by adding three
new chapters and only losing one.

When | ask contributors what they enjoy most about the project, the answer is almost always
about the people. We work together as teams, we support each other, and in only five months
time we were able to build the equivalent of a 600 page book! It was an enormous challenge,
and while we haven’t solved the world’s problems, we've shown what’s possible when people
choose to work together.

Please enjoy the 2020 Web Almanac, the culmination of our labor of love for the web. And be
sure to reach out if you'd like to join the team.

— Rick Viscomi, Web Almanac Editor-in-Chief

2020 Web Almanac by HTTP Archive iii

http://127.0.0.1:8080/en/2020/contributors
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/CONTRIBUTING.md

2020 Web Almanac by HTTP Archive

Part | Chapter1: CSS

Partl Chapter1

CSS

o0 GO
I . W e W s

.

Written by Lea Verou, Chris Lilley, and Rachel Andrew

Reviewed by Estelle Weyl, Elika Etemad aka fantasai, Jens Oliver Meiert, Miriam Suzanne, Catalin
Rosu, and Andy Bell

Analyzed by Rick Viscomi, Lea Verou, and Pokidov N. Dmitry

Edited by Barry Pollard

Introduction

Cascading Stylesheets (CSS) is a language used to lay out, format, and paint web pages and
other media. It is one of the three main languages for building websites—the other two being
HTML, used for structure, and JavaScript, used to specify behavior.

In last year’s inaugural Web Almanac’, we looked at a variety of CSS metrics® measured through
41SQL queries over the HTTP Archive corpus, to assess the state of the technology in 2019.
This year, we went a lot deeper, to measure not only how many pages use a given CSS feature,

but also how they use it.

Overall, what we observed was a web in two different gears when it comes to CSS adoption. In
our blog posts and Twitter bubbles, we tend to mostly discuss the newest and shiniest, however,

1 https://almanac.httparchive.org/en/2019/
2. https://almanac.httparchive.org/en/2019/css

2020 Web Almanac by HTTP Archive 1

https://almanac.httparchive.org/en/2019/
https://almanac.httparchive.org/en/2019/css

Part | Chapter1: CSS

there are still millions of sites using decade-old code. Things like vendor prefixes from a bygone
era, proprietary IE filters, and floats for layout, in all their clearfix glory. But we also observed
impressive adoption of many new features—even features that only got support across the
board this very year, like min() and max() .However, there is generally an inverse
correlation between how cool something is perceived to be and how much it is actually used;
for example, cutting-edge Houdini features were practically nonexistent.

Similarly, in our conference talks, we often tend to focus on complicated, elaborate use cases
that make heads explode and Twitter feeds fill with “CSS can do that?!”. However, it turns out
most CSS usage in the wild is fairly simple. CSS Variables are mostly used as constants and
rarely refer to other variables, calc() is mostly used with two terms, gradients mostly have

two stops and so on.

The web is not a teenager anymore—it is now 30 years old and acts like it. It tends to favor
stability over new bling and readability over complexity, occasional guilty pleasures aside.

Methodology

The HTTP Archive’ crawls millions of pages’ every month and runs them through a private
instance of WebPageTest’ to store key information of every page. (You can learn more about
this in our methodology).

For this year, we decided to involve the community in which metrics to study. We started with
an app to propose metrics and vote on them’. In the end, there were so many interesting
metrics that we ended up including nearly all of them! We only excluded Font metrics, since
there is a whole separate Fonts chapter and there was significant overlap.

The data in this chapter took 121 SQL queries to produce, totaling over 10K lines of SQL
including 3K lines of JavaScript functions within the SQL. This makes it the largest chapter in
the Web Almanac’s history.

A lot of engineering work went into making this scale of analysis feasible. Like last year, we put
all CSS code through a CSS parser’, and stored the Abstract Syntax Trees® (AST) for all
stylesheets in the corpus, resulting in a whopping 10 TB of data. This year, we also developed a
library of helpers’ that operate on this AST, and a selector parser“—both of which were also
released as separate open source projects. Most metrics involved JavaScript” to collect data

3. https://httparchive.org/

4. https://httparchive.org/reports/state-of-the-web#numUrls

5. https://webpagetest.org/

6. -//projects.verou. ice/?repo=Is I label: 20stat
7. https://github.com/reworkcss/css

8. https://en.wikipedia.org/wiki/Abstract_syntax_tree

9. https://github.com/leaverou/rework-utils

10. https://projectsverou.me/parsel

11. ht ithub.com/L I /i

2 2020 Web Almanac by HTTP Archive

https://httparchive.org/
https://httparchive.org/reports/state-of-the-web#numUrls
https://webpagetest.org/
https://projects.verou.me/mavoice/?repo=leaverou/css-almanac&labels=proposed%20stat
https://github.com/reworkcss/css
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://github.com/leaverou/rework-utils
https://projects.verou.me/parsel
https://github.com/LeaVerou/css-almanac/tree/master/js

Part | Chapter1: CSS

from a single AST, and SQL" to aggregate this data over the entire corpus. Curious how your
own CSS does against our metrics? We made an online playground” where you can try them out
on your own sites.

For certain metrics, looking at the CSS AST was not enough. We wanted to look at SCSS*
wherever it was provided via sourcemaps as it shows us what developers need from CSS that is
not yet possible, whereas studying CSS shows us what developers currently use that is. For
that, we had to use a custom metric—JavaScript code that runs in the crawler when it visits a
given page. We could not use a proper SCSS parser as that could slow down the crawl too much,
so we had to resort to regular expressions” (oh, the horror!). Despite the crude approach, we got
aplethora of insights!

Custom metrics were also used for part of the custom properties analysis. While we can get a
lot of information about custom property usage from the stylesheets alone, we cannot build a
dependency graph without being able to look at the DOM tree for context, as custom
properties are inherited. Looking at the computed style of the DOM nodes also gives us
information like what kinds of elements each property is applied to, and which of them are
registered“—information that we also cannot get from the stylesheets.

We crawl our pages in both desktop and mobile mode but for a lot of the data they give similar results
s0, unless otherwise noted, stats presented in this chapter refer to the set of mobile pages.

Usage

While JavaScript far surpasses CSS in its share of page weight, CSS has certainly grown in size
over the years, with the median desktop page loading 62 KB of CSS code, and one in ten pages
loading more than 240 KB of CSS code. Mobile pages do use slightly less CSS code across all
percentiles, but only by 4 to 7 KB. While this is definitely greater than previous years, it doesn’t
come close to JavaScript’s whopping median of 444 KB and top 10% of 1.2 MB

12. https://github.com/HTTPArchi I httparchive.org in/sql/2020/css
13. https://projects.verou.me/css-almanac/playground

14. https://sass-lang.com/

15. https://github.com/Lea\ Il i .JS

16. hti devels mozilla. ‘docs/Web/API/CS! isterProperty

2020 Web Almanac by HTTP Archive 3

https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2020/css
https://projects.verou.me/css-almanac/playground
https://sass-lang.com/
https://github.com/LeaVerou/css-almanac/blob/master/runtime/sass.js
https://developer.mozilla.org/docs/Web/API/CSS/RegisterProperty

Part | Chapter1: CSS

Stylesheet transfer size
Web Almanac 2020: CSS

desktop [l mobile
300

234
200
122
100 56
22
;]
0 [|
50 75 90

Percentile

Stylesheet transfer size (KB)

Figure 1.1. Distribution of the stylesheet transfer size per page.

It would be reasonable to assume that a lot of this CSS is generated via preprocessors or other
build tools, however only about 15% included sourcemaps. It is unclear whether this says more
about sourcemap adoption or build tool usage. Of those, the overwhelming majority (45%)
came from other CSS files, indicating usage of build processes that operate on CSS files, such as
minification, autoprefixer”, and/or PostCSS”. Sass” was far more popular than Less™ (34% of
stylesheets with sourcemaps vs 21%), with SCSS being the more popular dialect (33% for .scss
vs 1% for .sass).

All these kilobytes of code are typically distributed across multiple files and <style>
elements; only about 7% of pages concentrate all their CSS code in one remote stylesheet, as
we are often taught to do. In fact, the median page contains 3 <style> elements and 6 remote
stylesheets, with 10% of them carrying over 14 <style> elements and over 20 remote CSS
files! While this is suboptimal on desktop, it really kills performance on mobile, where round-
trip latency is more important than raw download speed.

1,379

Figure 1.2. The largest number of stylesheets loaded by a page.

17. https://autoprefixer.github.io/
18. https://postcss.org/

19. https://sass-lang.com/

20. https://lesscss.org/

4 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/stylesheet-size.png
https://almanac.httparchive.org/static/images/2020/css/stylesheet-size.png
https://autoprefixer.github.io/
https://postcss.org/
https://sass-lang.com/
https://lesscss.org/

Part | Chapter1: CSS

Shockingly, the maximum number of stylesheets per page is an incredible 26,777 <style>

elements and 1,379 remote ones! I'd definitely want to avoid loading that page!

Stylesheets per page
Web Almanac 2020: CSS
desktop [l mobile

25
21
20
[
o
8
5 15 12
[=%
2
@
I 10
2 6
2
2 3
n 5
1 .
! — ||
10 25 50 75 90
Percentile

Figure 1.3. Distribution of the number of stylesheets per page.

Another metric of size is the number of rules. The median page carries a total of 448 rules and
5,454 declarations. Interestingly, 10% of pages contain a tiny amount of CSS: fewer than 13
rules! Despite mobile having slightly smaller stylesheets, it also has slightly more rules,

indicating smaller rules overall (as it tends to happen with media queries).

2020 Web Almanac by HTTP Archive 5

https://almanac.httparchive.org/static/images/2020/css/stylesheet-count.png
https://almanac.httparchive.org/static/images/2020/css/stylesheet-count.png

Part | Chapter1: CSS

Rules per page
Web Almanac 2020: CSS
desktop [l mobile

2,000 1,831

O
2 1,500
5 1,074
1]
%J 1,000
2 479
£ 500
= 140

0 [|

10 25 50 75 90

Percentile

Figure 1.4. Distribution of the total number of style rules per page.

Selectors and the cascade

CSS offers a number of ways of apply styles to page, from classes, ids and using the all-
important cascade to avoid duplicating styles. So how are developers applying their styling to
their pages?

Class names

What do developers use class names for these days? To answer this question, we looked at the
most popular class names. The list was dominated by Font Awesome™ classes, with 192 out of
198 being fa or fa-* ! The only thing that initial exploration could tell us was that Font
Awesome is exceedingly popular and is used by almost one third of websites!

However, once we collapsed fa-* andthen wp-* classes (which come from WordPress”,
another exceedingly popular piece of software), we got more meaningful results. Omitting
these, state-related classes seem to be most popular, with .active occurring in nearly half of
websites,and .selected and .disabled followingsoon after.

Only afew of the top classes were presentational, with most of those being either alignment

21. https://fontawesome.com/
22. https://wordpress.com/

6 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/rules.png
https://almanac.httparchive.org/static/images/2020/css/rules.png
https://fontawesome.com/
https://wordpress.com/

Part | Chapter1: CSS

related (pull-right and pull-left from older Bootstrap®, alignright, alignleft
etc.) or clearfix —which still occurs in 22% of websites, despite floats being superseded as a

layout method by the more modern Grid and Flexbox modules.

Most popular class names
Web Almanac 2020: CSS
desktop [l mobile

50%
40%
3 30%
o
©
Qo
S 20%
€
@
o
) 10%
a
0%
@ @ : > N Q& @ 2 & N
P e g E
& NS N N N o @ &
Q\\ Q 2 & G 00(\
Class name

Figure 1.5. The most popular class names by the percent of pages.

IDs

Despite IDs being discouraged these days in some circles due to their much higher specificity,
most websites still use them, albeit sparingly. Fewer than half of pages used more than one ID in
any of their selectors (had a max specificity of (1,x,y) or less) and nearly all had a median
specificity that did not include IDs (0,x,y). See the selectors specification” for more details
calculating specificity and this (a,b,c) notation.

But what are these IDs used for? It turns out that the most popular IDs are structural:
#content , #footer, #header, #main ,despite corresponding HTML elements” existing
that could be used as selectors while also improving the semantic markup.

23. https://getbootstrap.com/
24. https://www.w3.0rg/TR/selectors/#specificity-rules
25, https://developer.mozilla.org/docs/Learn/HTML/Introduction_to_ HTML/Document_and_website_structure#HTML_layout_elements_in_more_detail

2020 Web Almanac by HTTP Archive 7

https://getbootstrap.com/
https://almanac.httparchive.org/static/images/2020/css/popular-class-names.png
https://almanac.httparchive.org/static/images/2020/css/popular-class-names.png
https://www.w3.org/TR/selectors/#specificity-rules
https://developer.mozilla.org/docs/Learn/HTML/Introduction_to_HTML/Document_and_website_structure#HTML_layout_elements_in_more_detail

Part | Chapter1: CSS

Most popular IDs
Web Almanac 2020: CSS
desktop [l mobile
15%

10%

5%

Percent of pages

0%

N

X X O N\
3@ 960 \09 ((\6\ o™
N @ 00‘(\6\

o) e X
& o ¢ \N"aQQ o

>
2O
¥+
Y

@®

Figure 1.6. The most popular IDs by the percent of pages.

IDs can also be used to intentionally reduce or increase specificity. The specificity hack of
writing an ID selector as an attribute selector” ([id="fo00"] instead of #foo toreduce
specificity) was surprisingly rare, with only 0.3% of pages using it at least once. Another ID-
related specificity hack, using a negation + descendant selector like :not(#nonexistent)
.foo instead of .foo toincrease specificity, was also very rare, appearing in only 0.1% of

pages.

!important

Instead, the old, crude !important is still used a fair bit despite its well-known drawbacks”.
The median page uses !important innearly 2% of its declarations, or 1in 50.

2,138

Figure 1.7. Mobile pages using ! important in every single declaration!.

Some developers literally cannot get enough of it: we found 2304 desktop pages and 2138

mobile ones thatuse !important inevery single declaration!

26. https://csswi: y.com/2014/07/hacks-for-dealing-with-specificity/
27. ps: al it ‘everything-y d-to-k bout-the-important-css- i ‘post-475:~:text=Di -to

8 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/popular-ids.png
https://almanac.httparchive.org/static/images/2020/css/popular-ids.png
https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/
https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/
https://www.impressivewebs.com/everything-you-need-to-know-about-the-important-css-declaration/#post-475:~:text=Drawbacks,-to

Part | Chapter1: CSS

limportant properties per page (%)

8%

6%

4%

2%

0%

limportant properties per page
Web Almanac 2020: CSS
desktop [l mobile

7%
4%
2%
1%
0%
10 25 50 75 20
Percentile

Figure 1.8. Distribution of the percent of !important properties per page.

What is it that developers are so keen to override? We looked at breakdown by property and
found that nearly 80% of pages use !important withthe display property.Itisacommon
strategy to apply display: none !important to hide contentin helper classes to override
existing CSS that uses display todefine alayout mode. This is a side effect of what, in
hindsight, was a flaw in CSS. It combined three orthogonal characteristics into one: internal
layout mode, flow behavior, and visibility status are all controlled by the display property.
There are efforts to separate out these values into separate display keywords so that they
can be tweaked independently via custom properties, but browser support is virtually

nonexistent” for the time being.

28.

https://caniuse.com/mdn-css_properties_display_multi-keyword_values

2020 Web Almanac by HTTP Archive 9

https://almanac.httparchive.org/static/images/2020/css/important-properties.png
https://almanac.httparchive.org/static/images/2020/css/important-properties.png
https://caniuse.com/mdn-css_properties_display_multi-keyword_values
https://caniuse.com/mdn-css_properties_display_multi-keyword_values

Part | Chapter1: CSS

Top limportant properties
Web Almanac 2020: CSS
desktop [l mobile

80%
60%
[
@
> 40%
Q
G
5 20%
2
(5}
o
0%
0 N A A o qo?
&° o) @ d&(o an « oo \505'0
R a \(\Q‘(O
oe°

Property

Figure 1.9. The top !important properties by the percent of pages.

Specificity and classes

Besides keeping id sand !important sfew and far between, there is a trend to circumvent
specificity altogether by cramming all the selection criteria of a selector in a single class name,
thus forcing all rules to have the same specificity and turning the cascade into a simpler last-
one-wins system. BEM is a popular methodology of that type, albeit not the only one. While it is
difficult to assess how many websites use BEM-style methodologies exclusively, since following
itin every rule is rare (even the BEM website” uses multiple classes in many selectors), about
10% of pages had a median specificity of (0,1,0), which may indicate mostly following a BEM-
style methodology. On the opposite end of BEM, often developers use duplicated classes” to
increase specificity and nudge a selector ahead of another one (e.g. . foo.foo instead of

. foo). This kind of specificity hack is actually more popular than BEM, being present in 14% of
mobile websites (9% of desktop)! This may indicate that most developers do not actually want
to get rid of the cascade altogether, they just need more control over it.

29. https://en.bem.info/
30. ¥ izardry.com/2014/07/hacks-for-dealing-with ifici fely-i ing ificity

10 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/important-top-properties.png
https://almanac.httparchive.org/static/images/2020/css/important-top-properties.png
https://en.bem.info/
https://csswizardry.com/2014/07/hacks-for-dealing-with-specificity/#safely-increasing-specificity

Part | Chapter1: CSS

Percentile Desktop Mobile

10 0,1,0 0,1,0
25 02,0 0,12
50 02,0 02,0
75 02,0 0,2,0
90 0,3,0 0,3,0

Figure 1.10. Distribution of the median specificity per page.

Attribute selectors

The most popular attribute selector, by far, isonthe type attribute, used in 45% of pages,

likely to style inputs of different types, e.g. to style textual inputs differently from radios,

checkboxes, sliders, file upload controls etc.

Percent of pages

50%

40%

30%

20%

10%

0% —

Most popular attribute selectors
Web Almanac 2020: CSS

desktop [l mobile

2 & X 8 2 L% RS DD W E N © 2 O
&5 R A . @ @ ¢ B\ A3 X
N & N " © N ,g\% O @K\ N &
& F & @ Q & 2 & S
N NG N
& NI IS
&{b

Attribute name

Figure 1.11. The most popular attribute selectors by the percent of pages.

Pseudo-classes and pseudo-elements

There is always a lot of inertia when we change something in the web platform after it is long

2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/attribute-selectors.png
https://almanac.httparchive.org/static/images/2020/css/attribute-selectors.png

Part | Chapter1: CSS

established. As an example, the web has still largely not caught up with pseudo-elements having
separate syntax compared to pseudo-classes, even though this was a change that happened
over a decade ago. All pseudo-elements that are also available with a pseudo-class syntax for
legacy reasons are vastly more widespread (2.5x to 5x!) with the pseudo-class syntax.

Usage of legacy pseudo-class syntax for
pseudo-elements

Web Almanac 2020: CSS (mobile)

pseudo-class [l pseudo-element

80%
60%
33% 30%

40%

20%

Percent of pages

1% 0%

0%

before after first-letter first-line

Selector

Figure 1.12. Usage of legacy :pseudo-class syntaxfor ::pseudo-elements asa percent of
mobile pages.

By far the most popular pseudo-classes are user action ones, with :hover, :focus,and
:active atthetop of the list, all used in over two thirds of pages, indicating that developers
like the convenience of specifying declarative Ul interactions.

:root seems far more popular than is justified by its function, used in one third of pages. In
HTML content, it just selects the <html> element, so why didn’t developers just use html ? A
possible answer may lie in a common practice related to defining custom properties, which are
also highly used, onthe :root pseudo-class. Another answer may lie in specificity: :root,
being a pseudo-class, has a higher specificity than html:(0, 1,0) vs (0,0, 1). It isa common
hack to increase specificity of a selector by prepending it with :root,e.g. :root .foo hasa
specificity of (0, 2, 0) compared to just (0, 1,0) for . foo . Thisis often all that is needed to
nudge a selector slightly over another one in the cascade race and avoid the sledgehammer that
is !important . To test this hypothesis, we also measured exactly that: how many pages use

:root atthe start of a descendant selector? The results verified our hypothesis: a remarkable
29% of pages use :root thatway! Furthermore, 14% of desktop pages and 19% of mobile
pagesuse html atthe start of a descendant selector, possibly to give the selector an even
smaller specificity boost. The popularity of these specificity hacks strongly indicates that

12 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/selector-pseudo-classes.png
https://almanac.httparchive.org/static/images/2020/css/selector-pseudo-classes.png

Part | Chapter1: CSS

developers need more fine grained control to tweak specificity than what is afforded to them

via !important . Thankfully, this is coming soon with :where() ,whichis already

implemented across the board” (albeit behind a flag in Chrome for now).

Percent of pages

100%

75%

50%

25%

0%

Most popular pseudo-classes
Web Almanac 2020: CSS

desktop [l mobile

>]
& & &
<« & & &
& F & & (\\‘\-0

Pseudo-class

Figure 1.13. The most popular pseudo-classes as a percent of pages.

When it comes to pseudo-elements, after the usual suspects ::before and ::after,nearly

all popular pseudo-elements were browser extensions for styling form controls and other built-

in Ul, strongly echoing the developer need for more fine-grained control over styling of built in

UL. Styling of focus rings, placeholders, search inputs, spinners, selection, scrollbars, media

controls was especially popular.

31.

https://caniuse.com/mdn-css_selectors_where

2020 Web Almanac by HTTP Archive 13

https://developer.mozilla.org/docs/Web/CSS/:where
https://developer.mozilla.org/docs/Web/CSS/:where
https://caniuse.com/mdn-css_selectors_where
https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-classes.png
https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-classes.png

Part | Chapter1: CSS

Most popular pseudo-elements
Web Almanac 2020: CSS

desktop [l mobile

before

after

-moz-focus-inner

-webkit-input-placeholder

-moz-placeholder
-webkit-search-decoration
-webkit-search-cancel-button
-webkit-inner-spin-button

-webkit-outer-spin-button

Pseudo-element

-webkit-scrollbar
selection

-ms-clear
-moz-selection
-webkit-media-controls

-webkit-scrollbar-thumb

o
xX

10% 20% 30% 40%

Percent of pages

Figure 1.14. The most popular pseudo-elements as a percent of pages.

Values and units

CSS provides a number of ways of specifying values and units, either in set lengths or
calculations or based on global keywords.

Lengths

The humble px unit has gotten a lot of negative press over the years. At first, because it didn’t
play nicely with old Internet Explorer’s zoom functionality, and, more recently, because there
are better units for most tasks that scale based on another design factor, such as viewport size,
element font size, or root font size, reducing maintenance effort by making implicit design
relationships explicit. The main selling point of px —its correspondence to one device pixel
giving designers full control—is also gone now, as a pixel is not a device pixel anymore with the
modern high pixel density screens. Despite all this, CSS pixels still nearly ubiquitously drive the
web’s designs.

14 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-elements.png
https://almanac.httparchive.org/static/images/2020/css/popular-selector-pseudo-elements.png

Part | Chapter1: CSS

72.58%

Figure 1.15. Percentage of <length> values that use the px unit.

The px unitis still going strong as the most popular length unit overall, with a whopping
72.58% of all length values across all style sheets using px ! And if we exclude percentages

(since they are not really a unit) the share of px increases even more, to 84.14%.

Most popular <length> units
Web Almanac 2020: CSS

desktop [§ mobile
o 73%

60%
40%

17%
20% 9%

Percent of occurrences

1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% —
px % em rem pt vw Vh ch ex cm mm in vmin pc vmax

Unit

Figure 1.16. The most popular <length> units as a percent of occurrences.

How are these px distributed across properties? Is there any difference depending on the
property? Most definitely. For example, as one might expect, px is far more popular in borders
(80-90%) compared to font-related metrics such as font-size, line-height or text-
indent . However, even for those, px usage vastly outnumbers any other unit. In fact, the only
properties for which another unit (any other unit) is more used than px are vertical-

align (55% em), mask-position (50% em), padding-inline-start (62% em),
margin-block-start and margin-block-end (65% em),and the brand new gap with
62% rem.

One could easily argue that a lot of this content is just old, written before authors were more
enlightened about using relative units to make their designs more adaptable and save
themselves time down the line. However, this is easily debunked by looking at more recent
properties suchas grid-gap (62% px).

2020 Web Almanac by HTTP Archive 15

https://almanac.httparchive.org/static/images/2020/css/length-units.png
https://almanac.httparchive.org/static/images/2020/css/length-units.png

Part | Chapter1: CSS

Property px <number> em % rem pt
font-size 70% 2% 17% 6% 4% 2%
line-height 54% 31% 13% 3%
border 71% 27% 2%
border-radius 65% 21% 3% 10%
text-indent 32% 51% 8% 9%
vertical-align 29% 12% 55% 4%
grid-gap 63% 11% 9% 1% 16%
mask-position 50% 50%
padding-inline-start 33% 5% 62%
gap 21% 16% 1% 62%
margin-block-end 4% 31% 65%
margin-inline-start 38% 46% 14% 1%

Figure 1.17. Unit usage by property.

Similarly, despite the much touted advantages of rem vs em for many use cases, and its
universal browser support for years”, the web has still largely not caught up with it: the trusty
em accounts for 87% of all font-relative units usage and rem trails far behind with 12%. We
did see some usage of ch (width of the '0’ glyph) and ex (x-height of the font in use) in the

wild, but very small (only 0.37% and 0.19% of all font-relative units).

32. https://caniuse.com/rem

16 2020 Web Almanac by HTTP Archive

https://caniuse.com/rem

Part | Chapter1: CSS

Most popular font-relative units
Web Almanac 2020: CSS

desktop [l mobile

100.0% 87.3%
w
[
Q
=
S 75.0%
17}
=
[
2
3 50.0%
£
Ne]
2 250% 12.2%
@
g 0.4% 0.2%
< []

0.0%

em rem ch ex

Unit
Figure 1.18. Relative share of font-relative units.
Lengths are the only types of CSS values for which we can omit the unit when the value is zero,

i.e.we canwrite 0 instead of Opx or Oem etc. Developers (or CSS minifiers?) are taking
advantage of this extensively: Out of all 0 values, 89% were unitless.

0 lengths by unit
Web Almanac 2020: CSS

(other) I —————

0.5%
px

10.7%

Unitless 0
88.7%

Figure 1.19. Relative popularity of O lengths by unit as a percent of occurrences on mobile pages.

2020 Web Almanac by HTTP Archive 17

https://almanac.httparchive.org/static/images/2020/css/font-units.png
https://almanac.httparchive.org/static/images/2020/css/font-units.png
https://almanac.httparchive.org/static/images/2020/css/zero-lengths.png
https://almanac.httparchive.org/static/images/2020/css/zero-lengths.png

Part | Chapter1: CSS

Calculations

Whenthe calc() functionwas introduced for performing calculations between different
units in CSS, it was a revolution. Previously, only preprocessors were able to accommodate such
calculations, but the results were limited to static values and unreliable, since they were

missing the dynamic context that is often necessary.

Today, calc() hasbeen supported by every browser” for nine years already, so it comes as no
surprise that it has been widely adopted with 60% of pages using it at least once. If anything, we

expected even higher adoption than this.

calc() isprimarily used for lengths, with 96% of its usage being concentrated in properties
that accept <length> values, and 60% of that (58% of total usage) on the width property!

Most popular properties using caic()
Web Almanac 2020: CSS

59% desktop [l mobile
60%

40%

20% 1%
L) 0, 0y
5% 4% 4% 2% 2% 2% 2% 1% 1% 1% 1% 1% 1%

0%

Percent of occurrences

Property

Figure 1.20. Relative popularity of properties that use calc() as a percent of occurrences.

It appears that most of this usage is to subtract pixels from percentages, as evidenced by the

fact that the most common unitsin calc() are px (51%of calc() usage)and % (42% of
calc() usage),andthat 64% of calc() usage involves subtraction. Interestingly, the most

popular length units with calc() are different than the most popular length units overall (e.g.
rem is more popular than em, followed by viewport units), most likely due to the fact that

code using calc() isnewer.

33. https://caniuse.com/calc

18 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/calc()
https://developer.mozilla.org/docs/Web/CSS/calc()
https://caniuse.com/calc
https://almanac.httparchive.org/static/images/2020/css/calc-properties.png
https://almanac.httparchive.org/static/images/2020/css/calc-properties.png

Part | Chapter1: CSS

Most popular units used in calc()
Web Almanac 2020: CSS
desktop [l mobile

o0 51%
42%

40%

20%

Percent of occurrences

2% 2% 2% 1%

0%

Unit

Figure 1.21. Relative popularity of units that use calc() as a percent of occurrences.

Most popular operators used in calc()
Web Almanac 2020: CSS
desktop [l mobile

80%
64%
2 60%
2
g
5
g 40%
= 20%
@
£ 20% 1%
Q 5%
| -
- / + *
Operator

Figure 1.22. Relative popularity of operators that use calc() as a percent of occurrences.

Most calculations are very simple, with 99.5% of calculations involving up to 2 different units,
88.5% of calculations involving up to 2 operators and 99.4% of calculations involving one set of
parentheses or fewer (3 out of 4 calculations include no parentheses at all).

2020 Web Almanac by HTTP Archive 19

https://almanac.httparchive.org/static/images/2020/css/calc-units.png
https://almanac.httparchive.org/static/images/2020/css/calc-units.png
https://almanac.httparchive.org/static/images/2020/css/calc-operators.png
https://almanac.httparchive.org/static/images/2020/css/calc-operators.png

Part | Chapter1: CSS

Number of units per calc() occurrence
Web Almanac 2020: CSS
desktop [l mobile

100% 89%
e 75%
Q
c
g
3
0
g 50%
5
=
8 D/
s 2% 1%
. 0%
0
- [

1 2 3+

Units per calc() occurrence

Figure 1.23. Distribution of the number of units per calc() occurrence.

Global keywords and all

For along time, CSS only supported one global keyword: inherit ,which enablesthe
resetting of an inheritable property to its inherited value or reusing the parent’s value for a
given non-inheritable property. It turns out the former is far more common than the latter, with
81.37% of inherit usage beingfound oninheritable properties. The rest is mostly to inherit
backgrounds, borders, or dimensions. The latter likely indicates layout struggles, as with the

proper layout mode one rarely needs to force width and height toinherit.

The inherit keyword has been particularly useful for resetting the gory default link colors to
the parent’s text color, when we intend to use something other than color as an affordance for
links. It is therefore no surprise that color isthe most common property that inherit is
used on. Nearly one third of all inherit usageisfoundonthe color property. 75% of pages

use color: inherit atleastonce.

While a property’s initial value is a concept that has existed since CSS 1%, it only got its own
dedicated keyword, initial,to explicitly refer toit 17 years later”, and it took another two
years for that keyword to gain universal browser support™in 2015. It is therefore no surprise
that itis used far less than inherit . While the old inherit is found on 85% of pages, initial

34. ttps://y 0rg/TR/CSS1/# ing-order
35. https://www.w3.0rg/TR/2013/WD-css3-cascade-20130103/#initial-keyword
36. https://caniuse.com/css-initial-value

20 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/calc-complexity-units.png
https://almanac.httparchive.org/static/images/2020/css/calc-complexity-units.png
https://developer.mozilla.org/docs/Web/CSS/inherit
https://developer.mozilla.org/docs/Web/CSS/inherit
https://www.w3.org/TR/CSS1/#cascading-order
https://www.w3.org/TR/2013/WD-css3-cascade-20130103/#initial-keyword
https://caniuse.com/css-initial-value

Part | Chapter1: CSS

appears in 51% of them. Furthermore, there is a lot of confusion about what initial actually
does, since display tops the list of properties most commonly used with initial,with
display: initial appearingin 10% of pages. Presumably, the developers thought that this
resets display toits value from the user agent stylesheet” value and were using it to toggle
display: none on and off. However, the initial value of display is inline,so display:
initial isjustanother way towrite display: inline and has no context-dependent

magical properties.

Instead, display: revert would have actually done what these developers likely expected
and would have reset display tothe UA value for the given element. However, revert is
much newer: it was defined in 2015 and only gained universal browser support this year”,
which explains its underuse: it only appears in 0.14% of pages and half of its usage is line-
height: revert; ,found inrecent versions of WordPress’ TwentyTwenty theme®.

The last global keyword, unset ,is essentially a hybrid of initial and inherit.On
inherited properties it becomes inherit andontherestit becomes initial,essentially
resetting the property across all cascade origins. Similarly,to initial, it was definedin 2013"
and gained full browser support in 2015“ Despite unset s higher utility, it is used in only 43%
of pages, whereas initial isusedin 51% of pages. Furthermore, besides max-width and

min-width ,inevery other property initial usage outweighs unset usage.

37. https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets

38. https://www.w3.0rg/TR/2015/WD-css-cascade-4-20150908/#valdef-all-revert

39. https://caniuse.com/css-revert-value

40. https://github.com/WordPress/WordPress/commit/303180b392c530b8e2c8b3c27532d591b915caeb
41. https://www.w3.0rg/TR/2013/WD-css-cascade-3-20130730/#inherit-initial

42. https://caniuse.com/css-unset-value

2020 Web Almanac by HTTP Archive 21

https://developer.mozilla.org/docs/Web/CSS/Cascade#User-agent_stylesheets
https://drafts.csswg.org/css-display/#the-display-properties
https://drafts.csswg.org/css-display/#the-display-properties
https://drafts.csswg.org/css-display/#the-display-properties
https://www.w3.org/TR/2015/WD-css-cascade-4-20150908/#valdef-all-revert
https://caniuse.com/css-revert-value
https://github.com/WordPress/WordPress/commit/303180b392c530b8e2c8b3c27532d591b915caeb
https://www.w3.org/TR/2013/WD-css-cascade-3-20130730/#inherit-initial
https://caniuse.com/css-unset-value

Part | Chapter1: CSS

Global keyword adoption
Web Almanac 2020: CSS

desktop [l mobile

0,
100% 85%

75%
0
5 51%
S 439
s 50% %
€
@
2
(5]
a 25%

0%
0%
inherit initial unset revert
keyword

Figure 1.24. Adoption of global keywords as a percent of pages.

The all property was introduced in 2013 and gained near-universal support in 2016 (except
Edge) and universal support earlier this year®. It is a shorthand of nearly every property in CSS
(except custom properties, direction,and unicode-bidi), and only accepts the four
global keywords”(initial, inherit, unset,and revert) asvalues. It was envisioned as
aoneliner CSSreset, eitheras all: unset or all: revert,depending onwhat kind of
reset we wanted. However, adoption is still very low: we only found all on 477 pages (0.01%
of all pages), and only used with the revert keyword.

Color

They say the old jokes are the best, and that goes for colors too. The original, cryptic, #rrggbb
hex syntax remains the most popular way to specify a color in CSS in 2020: Half of all colors are
written that way. The next most popular format is the somewhat shorter #rgb three-digit hex
format at 26%. While it is shorter, it is also able to express way fewer colors; only 4096, out of
the 16.7 million sRGB values.

43. https://www.w3.0rg/TR/2013/WD-css3-cascade-20130103/#all-shorthand
44. https://caniuse.com/css-all
45, csswg.org/css-cascade-4/#de Iting-keyword:

22 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/keyword-totals.png
https://almanac.httparchive.org/static/images/2020/css/keyword-totals.png
https://www.w3.org/TR/2013/WD-css3-cascade-20130103/#all-shorthand
https://caniuse.com/css-all
https://caniuse.com/css-all
https://drafts.csswg.org/css-cascade-4/#defaulting-keywords
https://drafts.csswg.org/css-cascade-4/#defaulting-keywords

Part | Chapter1: CSS

Most popular color formats
Web Almanac 2020: CSS
desktop [l mobile

60% 50%

3 40%
Qo
c
g
5
8
© 20%
2
o
8 1% 0% 0% 0% 0% 0% 0% 0% 0%
g 0% -
d @ NN ¢ PSS N D
FF S E S ¢
& < & & &
N &
&
Color format

Figure 1.25. Relative popularity of color formats as a percent of occurrences.

Similarly, 99.89% of functionally specified sSRGB colors are using the since-forever legacy
format with commas rgb (127, 255, 84) ratherthanthe new comma-less form rgb (127
255 84) .Because, despite all modern browsers accepting the new syntax, changing offers
zero advantage to developers.

So why do people stray from these tried and true formats? To express alpha transparency. This
is clear when you look at rgba () , which is used 40 times more than rgb() (13.82% vs 0.34%
of all colors) and hsla() ,whichis used 30 times more than hs1() (0.25% vs 0.01% of all
colors).

HSL is supposed to be easy to understand and easy to modify”. But these numbers show that in
practice, HSL is used in stylesheets far less than RGB, likely because those advantages are
greatly over-stated”.

46. https://drafts.csswg.org/css-color-4/#the-hsl-notation
47. ht d wg.org/css-color-4, hsl-sucks

2020 Web Almanac by HTTP Archive 23

https://almanac.httparchive.org/static/images/2020/css/popular-color-formats.png
https://almanac.httparchive.org/static/images/2020/css/popular-color-formats.png
https://drafts.csswg.org/css-color-4/#the-hsl-notation
https://drafts.csswg.org/css-color-4/#ex-hsl-sucks

Part | Chapter1: CSS

Color formats by alpha support
Web Almanac 2020: CSS (mobile)

B hsl() system [l #rgba [l currentColor [l hsla() [rgb() [#rrggbbaa
namedColor [l transparent [l rgba()

25.00%

20.00%

15.00%

10.00%

Percent of occurrences

5.00%

0.00%

Alpha No Alpha

Color format

Figure 1.26. Relative popularity of color formats grouped by alpha support as a percent of
occurrences on mobile pages (excluding #rrggbb and #rgb).

What about named colors? The keyword transparent ,whichisjust another way to say
rgb(0 0 0 / 0) ,is most popular, at 8.25% of all sSRGB values (66% of all named-color
usage); followed by all the named (X11) colors—I’m looking at you, papayawhip —at 1.48%.
The most popular of these were the easily understood names like white, black, red,
gray, blue. whitesmoke was the most common of the non-ordinary names (sure, we can
visualize whitesmoke, right) while the likes of gainsboro, lightCoral and burlywood
were used way less. We can understand why—you need to look them up to see what they

actually mean!

And if you are going for fanciful color names, why not define your own with CSS Custom
properties? --intensePurple and --corporateBlue meanwhatever you need them to
mean. This probably explains why 50% of Custom Properties are used for colors.

24 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/color-formats-alpha.png
https://almanac.httparchive.org/static/images/2020/css/color-formats-alpha.png

Part | Chapter1: CSS

Client
@® Mobile O Desktop

Select all | Deselect all | [Filter colors

O transparent 83.51%

O white 7.34%
W Oblack 242% |1
B 9re 201% |
B @ currentcotor 143% |
W 9gray 079% |
silver 0.58%
W gy 031% |
B &green 03% |
B % nagenta 0.13%
W gbue 0.13%
whitesmoke 0.12%
lightgray 0.11%
orange 01%
Lightgrey 0.1%
yellow 006%
Highlight 0.04% Distribution of included colors
gold 004%
pink 003%
N 9ta 0.02%
gainsboro 002%
B %urpte 0.02%

Figure 1.27. Interactively explore the color keyword usage data with this interactive app®!

48. https://codepen.io/leaverou/pen/GRjjJwJ

2020 Web Almanac by HTTP Archive 25

https://codepen.io/leaverou/pen/GRjjJwJ
https://codepen.io/leaverou/pen/GRjjJwJ
https://codepen.io/leaverou/pen/GRjjJwJ

Part | Chapter1: CSS

Keyword Desktop Mobile

D transparent 84.04% 83.51%
D white 6.82% 7.34%
l black 2.32% 2.42%
l red 2.03% 2.01%
. currentColor 1.43% 1.43%
l gray 0.75% 0.79%
D silver 0.66% 0.58%
l grey 0.35% 0.31%
l green 0.36% 0.30%
l magenta 0.00% 0.13%
l blue 0.16% 0.13%
D whitesmoke 0.17% 0.12%
D lightgray 0.06% 0.11%
D orange 0.12% 0.10%
D lightgrey 0.04% 0.10%
D yellow 0.08% 0.06%
l Highlight 0.01% 0.04%
D gold 0.04% 0.04%
D pink 0.03% 0.03%
l teal 0.03% 0.02%

Figure 1.28. Relative popularity of color keywords as a percent of occurrences.

26 2020 Web Almanac by HTTP Archive

Part | Chapter1: CSS

And, lastly, the once-deprecated—now partially un-deprecated—system colors like Canvas
and ThreeDDarkShadow : these were a terrible idea, introduced to emulate the typical user
interface of things like Java or Windows 95, and already unable to keep up with Windows 98,
they soon fell by the wayside. Some sites use these system colors to try and fingerprint you, a
loophole that we are trying to close as we speak”. There are few good reasons to use them, and

most websites (99.99%) don't, so we are all good.

The rather useful value currentColor,surprisingly, trailed at 0.14% of all sSRGB colors

(1.62% of all named colors).

All the colors we discussed so far have one thing in common: sRGB, the standard color space for
the web (and for High Definition TV, which is where it came from). Why is that so bad? Because
it can only display a limited range of colors: your phone, your TV, and probably your laptop are
able to display much more vivid colors due to advances in display technology. Displays with
wide color gamut, which used to be reserved for well-paid professional photographers and
graphic designers, are now available to everyone. Native apps use this capability, as do digital
movies and streaming TV services, but until recently the web was missing out.

And we are still missing out. Despite being implemented in Safariin 2016%, the use of display-p3
color in web pages is vanishingly small. Our crawl of the web found only 29 mobile and 36
desktop pages using it! (And more than half of those were syntax errors, mistakes, or attempts
to use the never-implemented color-mod() function). We were curious why.

Compatibility, right? You don’t want things to break? No. In the stylesheets we examined, we
found solid use of fallback: with document order, the cascade, @supports ,the color-gamut
media query, all that good stuff. So in a stylesheet we would see the color the designer wanted,
expressed in display-p3, and also a fallback sSRGB color. We computed the visible difference (a
calculation called AE2000*) between the desired and fallback color and this was typically quite
modest. A small tweak. A careful exploration. In fact, 37.6% of the time, the color specified in
display-p3 actually fell inside the range of colors (the gamut) that SRGB can manage. It seems
people are just cautiously experimenting with this at the moment rather than to get real gains,
but more is surely to come in this space, so one to watch.

49. ht ithub.com/w3c/csswg-drafts/i 5710
50. https://webkit.or 9/6682/improving-color-on-the by
51. https://zschuessler.github.io/DeltaE/learn/

2020 Web Almanac by HTTP Archive 27

https://github.com/w3c/csswg-drafts/issues/5710
https://css-tricks.com/currentcolor/
https://css-tricks.com/currentcolor/
https://webkit.org/blog/6682/improving-color-on-the-web/
https://zschuessler.github.io/DeltaE/learn/

Part | Chapter1: CSS

SRGB display-p3 AE2000 Ingamut
rgba(255,205,63,1) D color(display 1 0.80 0.25 / 1) 3.880 false
rgba(120,0,255,1) . color(display 0.47 0 1 / 1) 1.933 false
rgba(121,127,132,1) . color(display 0.48 0.50 0.52 / 1) 0.391 true
rgba(200,200,200,1) D color(display 0.78 0.78 0.78 / 1) 0.274 true
rgba(97,97,99,1) . color(display 0.39 0.39 0.39 / 1) 1.474 true
rgba(0,0,0,1) . color(display 0 0 6 / 1) 0.000 true
rgba(255,255,255,1) D color(display 111/ 1) 0.015 false
rgba(84,64,135,1) [l cotor(disptlay 0.33 0.25 0.53 / 1) 1.326 true
rgba(131,103,201,1) . color(display 0.51 0.40 0.78 / 1) 1.348 true
rgba(68,185,208,1) | color(display 0.27 0.75 0.82 / 1) 5591 false
rgb(255,0,72) B cotor(display 1 6 0.2823 / 1) 3529 false
rgba(255,205,63,1) || color(display 1 6.80 0.25 / 1) 3880 false
rgba(241,174,50,1) D color(display 0.95 0.68 0.17 / 1) 4.701 false
rgba(245,181,40,1) D color(display 0.96 0.71 0.16 / 1) 4.218 false
rgb(147, 83, 255) . color(display 0.58 0.33 1 / 1) 2.143 false
rgba(75,3,161,1) [color(disptlay 0.29 0.01 0.63 / 1) 1.321 false
rgba(255,0,0,0.85) . color(display 1 0 0 / 0.85) 7.115 false
rgba(84,64,135,1) [l color(display 0.33 0.25 0.53 / 1) 1.326 true
rgba(131,103,201,1) . color(display 0.51 0.40 0.78 / 1) 1.348 true
rgba(68,185,208,1) D color(display 0.27 0.75 0.82 / 1) 5.591 false
#6d3bFf W cotor(display .427 .231 1) 1.584 false
#63d658 B cotor(display .612 .839 .345) 4,958 false
#3900 W cotor(disptlay 1 .224 0) 7.140 false
#7c78b3 [] cotor(display .486 .973 .762) 4284 true
#78F818 [] color(display .973 .973 .973) 0.028 true
#e3f5fd []| color(display .875 .945 .976) 1.918 true
#074832 . color(display .905882353 3681 true

.282352941 .196078431 / 1)

Figure 1.29. This table shows the fallback sRGB colors, then the display-p3 colors. A color difference
(AE2000) of 1 is barely visible, while 5 is clearly distinct. This is a summary table (see full table”).

28 2020 Web Almanac by HTTP Archive

https://docs.google.com/spreadsheets/d/1sMWXWjMujqfAREYxNbG_t1fOJKYCA6ASLwtz4pBQVTw/#gid=264429000

Part | Chapter1: CSS

Figure 1.30. uv chromaticity of specified display-p3 colors and their fallbacks.

The purplish colors are similar in SRGB and display-p3, perhaps because both those color
spaces have the same blue primary. Various reds, orange-yellows, and greens are near the SRGB
gamut boundary (nearly as saturated as possible) and map to analogous points near the display-

p3 gamut boundary.

There seem to be two reasons why the web is still trapped in sSRGB land. The first is lack of tools,
lack of good color pickers, lack of understanding of what more vivid colors are available. But the
major reason, we think, is that to date Safari is the only browser to implement it. This is
changing, rapidly—Chrome and Firefox are both implementing right now—but until that
support ships, probably using display-p3 is too much effort for too little gain because only 17%
of viewers” will see those colors. Most people will see the fallback. So current usage is a subtle

52. https://docs.google.c 1sMWXWjMujqfAREYxNbG_t 1fOJKYCAG6ASLwtz4pBQVTw/#gid=264429000
53. https/g L Ket-sh:

2020 Web Almanac by HTTP Archive 29

https://almanac.httparchive.org/static/images/2020/css/p3-chromaticity-big.svg
https://almanac.httparchive.org/static/images/2020/css/p3-chromaticity-big.svg
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share

Part | Chapter1: CSS

shift in color vibrancy, rather than a big difference.

It will be interesting to see how the use of display-p3 color (other options exist, but this is the
only one we found in the wild) changes over the next year or two.

Because wide color gamut (WCG) is only the beginning. The TV and movie industry has already
moved past P3 to an even wider gamut, Rec. 2020; and also a wider range of lightness, from
blinding reflections to deepest shadows. High Dynamic Range (HDR) has already arrived in the
home, especially on games, streaming TV and movies. The web has a bunch of catching up to do.

Gradients

Despite minimalism and flat design being all the rage, CSS gradients are used in 75% of pages.
As expected, nearly all gradients are used in backgrounds. 74.45% of pages specify gradients in
backgrounds, but only 7% in any other property.

Linear gradients are 5 times more popular than radial ones, appearing in almost 73% of pages,
compared to 15% for radial gradients. The difference in popularity is so staggering, that even

-ms-linear-gradient () ,which was never needed (Internet Explorer 10 supported
gradients both with and without the -ms- prefix), is more popular than radial-
gradient() ! The newly supported” conic-gradient() iseven more underutilized,
appearing in only 652 desktop pages (0.01%) and 848 mobile pages (0.01%), which is expected,
since Firefox has only just shipped its implementation to the stable channel.

Repeating gradients of all types are fairly underused too, with repeating-linear-
gradient() appearinginonly 3% of pages and the others trailing behind even more
(repeating-conic-gradient() isonlyusedin21 pages!).

Prefixed gradients are also still very common, even though prefixes haven’'t been needed in
gradients since 2013. It is notable that -webkit-gradient() is still used in half of all websites,
even though it hasn’t been needed since 2011”. And -webkit-linear-gradient() isstill
the second most used gradient function of all, appearing in 57% of websites, with the other
prefixed forms also being used in a third to half of pages.

54. https://caniuse.com/css-conic-gradients
55. https://caniuse.com/css-gradients

30 2020 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Rec._2020
https://caniuse.com/css-conic-gradients
https://caniuse.com/css-gradients

Part | Chapter1: CSS

Most popular gradient functions
Web Almanac 2020: CSS
desktop [} mobile

linear-gradient 73%
-webkit-linear-gradient 57%
-webkit-gradient 50%
5 -o-linear-gradient 50%
E -moz-linear-gradient 49%
E -ms-linear-gradient 33%
g radial-gradient m——— 15%
O -webkit-radial-gradient . 9%
repeating-linear-gradient P 3%
-moz-radial-gradient F 3%
0% 20% 40% 60% 80%
Percent of pages
Figure 1.31. The most popular gradient functions as a percent of pages.
Most popular unprefixed gradient functions
Web Almanac 2020: CSS
desktop [l mobile
linear-gradient 72.57%
radial-gradient 15.13%
c
i<t . . .
§ repeating-linear-gradient 2.99%
E repeating-radial-gradient 0.07%
=
©
15} conic-gradient | 9 01%
repeating-conic-gradient 0.00%
0.00% 20.00% 40.00% 60.00% 80.00%

Percent of pages

Figure 1.32. The most popular gradient functions as a percent of pages, omitting vendor prefixes.

Using color stops with different colors in the same position (hard stops) to create stripes and
other patterns is a technique first popularized by Lea Verou in 2010%, which by now has many
interesting variations, including some really cool ones with blend modes”. While it may seem

56. https://leaverou.me/2010/12/checl tripes-oth -patte ith-css.
57. https://bennettfeely.com/gradients/

2020 Web Almanac by HTTP Archive 31

https://almanac.httparchive.org/static/images/2020/css/gradient-functions.png
https://almanac.httparchive.org/static/images/2020/css/gradient-functions.png
https://almanac.httparchive.org/static/images/2020/css/gradient-functions-unprefixed.png
https://almanac.httparchive.org/static/images/2020/css/gradient-functions-unprefixed.png
https://lea.verou.me/2010/12/checkered-stripes-other-background-patterns-with-css3-gradients/
https://bennettfeely.com/gradients/

Part | Chapter1: CSS

like a hack, hard stops are found in 50% of pages, indicating a strong developer need for
lightweight graphics from within CSS without resorting to image editors or external SVG.

Interpolation hints (or as Adobe, who popularized the technique, calls them: “midpoints”) are
found on only 22% of pages, despite near universal browser support since 2015”. Whichis a
shame, because without them, the color stops are connected by straight-lines in the color
space, rather than smooth curves. This low usage probably reflects a misunderstanding of what
they do, or how to use them; contrast this with CSS transitions and animations, where easing
functions (which do much the same thing, i.e. connect the keyframes with curves rather than
jerky straight lines) are much more commonly used (80% of transitions). “Midpoints” is not a
very understandable description, and “interpolation hint” sounds like you are helping the

browser to do simple arithmetic.

Most gradient usage is rather simple, with over 75% of gradients found across the entire
dataset only using 2 color stops. In fact, fewer than half of pages contain even a single gradient

with more than 3 color stops!

The gradient with the most color stops is this one” with 646 stops! So pretty! This is almost
certainly generated, and the resulting CSS code is 8KB, so a 1px tall PNG would likely have done

the job as well, with a smaller footprint (our image below is 1.1 KB).

Figure 1.33. The gradient with the most color stops, 646.

Layout

CSS now has a number of layout options—a far cry from the days when tables had to be used for
layouts. Flexbox, Grid and Multiple-column layouts are now well supported in most browsers so

let’s look at how these are being used.

Flexbox and Grid adoption

Inthe 2019 edition®, 41% of pages across mobile and desktop were reported as containing
Flexbox” properties. In 2020, this number has grown to 63% for mobile and 65% for desktop.
With the number of legacy sites developed before Flexbox was a viable tool still in existence,
58. https://caniuse.com/mdn-css_types_image_gradient_linear-gradient_interpolation_hints
59. https://dabblet.com/gist/4d1637d78c7 1ef2d8d37952fc6e90ff5

60. https://almanac.httparchive.org/en/2019/css#flexbox
61. https://developer.mozilla.org/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of Flexbox

32 2020 Web Almanac by HTTP Archive

https://caniuse.com/mdn-css_types_image_gradient_linear-gradient_interpolation_hints
https://dabblet.com/gist/4d1637d78c71ef2d8d37952fc6e90ff5
https://almanac.httparchive.org/static/images/2020/css/gradient-most-stops.png
https://almanac.httparchive.org/static/images/2020/css/gradient-most-stops.png
https://almanac.httparchive.org/en/2019/css#flexbox
https://developer.mozilla.org/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox

Part | Chapter1: CSS

we can safely say there is wide adoption of this layout method.

If we look at Grid layout”, the percentage of sites using Grid layout has grown to 4% for mobile

and 5% for desktop. Usage has doubled since last year, but still lags far behind flex layout.

Mobile flexbox and grid adoption by year
Web Almanac 2020: CSS

2019 [2020
80%
63%

60%
v
(]
(=2}
@
Q.
5 40%
€
@
2
@
o

20%

4%
0% [I

flexbox grid

Figure 1.34. Adoption of Flexbox and grid by year as a percent of mobile pages.

62. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout

2020 Web Almanac by HTTP Archive

33

https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout
https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-mobile.png
https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-mobile.png

Part | Chapter1: CSS

Desktop flexbox and grid adoption by year
Web Almanac 2020: CSS

2019 [2020
80%
65%

60%
0
Q
j=2]
[
Q.
‘s 40%
€
8
o
o

20%

5%
0% [I
flexbox grid

Figure 1.35. Adoption of flexbox and grid by year as a percent of desktop pages.

Note that unlike most other metrics in this chapter this is actual measured Grid usage, and not
just grid-related properties and values that are specified in a stylesheet and potentially not
used. While at first glance this may seem more accurate, one thing to keep in mind is that HTTP
Archive crawls home pages, so this data may be skewed lower due to grids often appearing
more in internal pages.

So, let’s look at another metric as well: how many pages specify display: grid and

display: flex intheir stylesheets? That metric puts Grid layout at significantly higher
adoption, with 30% of pages using display: grid atleast once. It does not however affect
the number for Flexbox as significantly, with 68% of pages specifying display: flex.While
this sounds like impressively high adoption for Flexbox, it is worth noting that CSS tables are
still far more popular with 80% of pages using table display modes! Some of this usage may be
due to certain types of clearfix” which use display: table,and not for actual layout.

63. /fcss-tricks.c ipp clear-fix/

34 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-desktop.png
https://almanac.httparchive.org/static/images/2020/css/flexbox-grid-desktop.png
https://css-tricks.com/snippets/css/clear-fix/

Part | Chapter1: CSS

block
absolute
floats
inline-block
inline

fixed
css-tables
flex

box

Layout method

inline-flex
grid
list-item
inline-table
inline-box

sticky

Top layout methods
Web Almanac 2020: CSS

desktop [l mobile

92%
92%
91%
90%
81%
80%
80%
68%
46%
33%
—— 30%
26%
Eeeessssm——— 26%
— 20%
—— 13%
0% 25% 50% 75% 100%

Percent of pages

Figure 1.36. Layout modes and percentage of pages they appear on. This data is a combination of
certain values fromthe display, position,and float properties.

Given that Flexbox was usable in browsers earlier than Grid layout, it is likely that some of the

Flexbox usage is for setting up a grid system. In order to use Flexbox as a grid, authors need to

disable some of the inherent flexibility of Flexbox. To do this you set the flex-grow property

to 0,thensize flex items using percentages. Using this information we were able to report that

19% of sites both on desktop and mobile were using Flexbox in this grid-like way.

The reasons for choosing Flexbox over Grid are frequently cited as browser support, given that

Grid layout was not supported in Internet Explorer®. In addition, some authors may well not

have learned Grid layout yet or are using a framework with a Flexbox-based grid system. The

Bootstrap” framework currently uses a Flexbox-based grid, in common with several other

popular framework choices.

64. https://caniuse.com/css-grid

65. ‘docs/4.5/layout/gric

2020 Web Almanac by HTTP Archive

35

https://almanac.httparchive.org/static/images/2020/css/layout-methods.png
https://almanac.httparchive.org/static/images/2020/css/layout-methods.png
https://caniuse.com/css-grid
https://getbootstrap.com/docs/4.5/layout/grid/

Part | Chapter1: CSS

Usage of different Grid layout techniques

The Grid layout specification gives a number of ways to describe and define layout in CSS. The
most basic usage involves laying items out from one grid line to another”. What about naming
lines”,or use of grid-template-areas?

For named lines, we checked for the presence of square brackets in a track listing. The name or
names being placed inside square brackets.

.wrapper {

display: grid;

grid-template-columns: [main-start] 1fr [content-start] 1fr
[content-end] 1fr [main-end];

}

The result of this showed that 0.23% of Grid-using pages on mobile had named lines, and 0.27%
on desktop.

The Grid template areas” feature, allowing authors to name grid items then place them on the
grid as the value of the grid-template-areas property,fared a little better. Of Grid-using
sites, 19% on mobile and 20% on desktop were using this method.

These results show that not only is Grid layout usage still relatively low on production websites,
but the usage of it is also relatively simple. Authors are choosing to use the simple line-based
placement over methods which would allow them to name lines and areas. While there is
nothing wrong in choosing to do so, | wonder if slow adoption of Grid layout is partly due to the
fact that authors haven't yet realized the power of these features. If Grid layout is seen as
essentially Flexbox with poor browser support, this would certainly make it a less compelling
choice.

Multiple-column layout

The multiple-column layout”, or multicol, specification enables laying out of content in columns,
much as in a newspaper. While popular in CSS as used for print, it is less useful on the web due
to the risk of creating a situation where a reader needs to scroll up and down to read the
content. Based on the data, however, there are significantly more pages using multicol than

66. https://ww i ine.com/2020/01 ing-css-grid-li

67. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Layout_using_Named_Grid_Lines
68. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Grid_Template_Areas

69. https://developer.mozilla.org/docs/Web/CSS/CSS_Columns/Basic_Concepts_of_Multicol

36 2020 Web Almanac by HTTP Archive

https://www.smashingmagazine.com/2020/01/understanding-css-grid-lines/
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Layout_using_Named_Grid_Lines
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Layout_using_Named_Grid_Lines
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout/Grid_Template_Areas
https://developer.mozilla.org/docs/Web/CSS/CSS_Columns/Basic_Concepts_of_Multicol

Part | Chapter1: CSS

Grid layout with 15.33% on the desktop and 14.95% on mobile. While basic multicol properties
are well supported, more complex usage and controlling column breaks with fragmentation”
has patchy support™. Considering this, it was quite surprising to see how much usage there is.

Box sizing

It is useful to know how big the boxes on your page are going to be, but with the standard CSS

I

box model” adding padding and border onto the size of the content-box, the size you gave your
box is smaller than the box rendered on your page. While we can’t change history, the box-
sizing property allows authors to switch to applying the specified size to the border-box,
so the size you set is the size you see rendered. How many sites are using the box-sizing
property? Most of them! The box-sizing property appearsin 83.79% of desktop CSS and

86.39% on mobile.

border-box declarations per page
Web Almanac 2020: CSS

desktop [l mobile 26
100
@ 75
(=]
[
Q.
2 46
@ 50
[=
o
©
S
é 25 17
4
0 .
0 |
10 25 50 75 90
Percentile

Figure 1.37. Distribution of the number of border-box declarations per page.

The median desktop page has 14 box-sizing declarations. Mobile has 17. Perhaps due to
component systems inserting the declaration per component, rather than globally as a rule for
all elements in the stylesheet.

70. https://m hi ine.com/2019/02/c:
71. https://caniuse.com/multicolumn
72. https://developer.mozilla.org/docs/Learn/CSS/Building_blocks/The_box_model#What_is_the_CSS_box_model

2020 Web Almanac by HTTP Archive 37

https://www.smashingmagazine.com/2019/02/css-fragmentation/
https://caniuse.com/multicolumn
https://developer.mozilla.org/docs/Learn/CSS/Building_blocks/The_box_model#What_is_the_CSS_box_model
https://developer.mozilla.org/docs/Learn/CSS/Building_blocks/The_box_model#What_is_the_CSS_box_model
https://almanac.httparchive.org/static/images/2020/css/box-sizing.png
https://almanac.httparchive.org/static/images/2020/css/box-sizing.png

Part | Chapter1: CSS

Transitions and animations

Transitions and animations have overall become very popular with the transition property
being used on 81% of all pages and animation on 73% of mobile pages and 70% of desktop
pages. It is somewhat surprising that usage is not lower on mobile, where one would expect that
conserving battery power” would be a priority. On the other hand, CSS animations are far more
battery efficient than JS animation, especially the majority of them that just animate

transforms and opacity (see next section).

The single most common transition property specifiedis all,used in 41% of pages. This is a
little baffling because all is the initial value, so it does not actually need to be explicitly
specified. After that, fade in/out transitions appear to be the most common type, used in over
one third of crawled pages, followed by transitions onthe transform property (most likely
spin, scale, movement transitions). Surprisingly, transitioning height is much more popular
than transitioning max-height , even though the latter is a commonly taught workaround
when the start or end height is unknown (auto). It was also surprising to see significant usage
forthe scale property (2%), despite its lack of support beyond Firefox. Intentional usage of
cutting edge CSS, a typo, or a misunderstanding of how to animate transforms?

Most popular transition properties
Web Almanac 2020: CSS
desktop [l mobile
50% 41%
40%
30%
20% 13%12% 19

0,

%

7% 6% 6% 6% 6% 6% 6%
10%

Percent of pages

0%

Property

Figure 1.38. Adoption of transition properties as a percent of pages.

We were glad to discover that most of these transitions are fairly short, with the median
transition duration being only 300ms, and 90% of websites having median durations of less

73. https://css-tricks.com/how-web-content-can-affect-power-usage/

38 2020 Web Almanac by HTTP Archive

https://css-tricks.com/how-web-content-can-affect-power-usage/
https://almanac.httparchive.org/static/images/2020/css/transition-properties.png
https://almanac.httparchive.org/static/images/2020/css/transition-properties.png

Part | Chapter1: CSS

than half a second. This is generally good practice, as longer transitions can make a Ul feel
sluggish, while a short transition communicates a change without getting in the way.

Distribution of transition durations
Web Almanac 2020: CSS
desktop [l mobile

500
400
w
E
& 300
©
=
©
S 200
= 100
=
o . I
0
10

Percentile

Figure 1.39. Distribution of transition durations.

The specification authors got it right! Ease isthe most popular timing function specified, even
though it is the default so it can actually be omitted. Perhaps people explicitly specify the
defaults because they prefer the self-documenting verbosity, or—perhaps more likely—because
they don’'t know that they are defaults. Despite the drawbacks of linearly progressing
animation (it tends to look dull and unnatural), linear isthe second most highly used timing
function with 19.1%. It is also interesting that the built-in easing functions accommodate over
87% of all transitions: only 12.7% chose to specify a custom easing via cubic-bezier() .

2020 Web Almanac by HTTP Archive 39

https://almanac.httparchive.org/static/images/2020/css/transition-durations.png
https://almanac.httparchive.org/static/images/2020/css/transition-durations.png

Part | Chapter1: CSS

Timing functions
Web Almanac 2020: CSS (mobile)

ease-in
4.4%
steps
5.3%
ease-out
9.1%

ease
30.5%

cubic-bezier
12.7%

linear
19.1%

ease-in-out
18.9%

Figure 1.40. Relative popularity of timing functions as a percent of occurrences on mobile pages.

A major driver of animation adoption seems to be Font Awesome, as evidenced by the
animation name fa-spin appearing in one out of four pages and thus topping the list of most
popular animation names. While there are a wide variety of animation names, it appears that
most of them fall into only a few basic categories, with one in five animations being some kind of
spin. That may also explain the high percentage of linearly progressing transitions & animations:
if we want a smooth perpetual rotation, linear isthe way to go.

40 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/transition-timing-functions.png
https://almanac.httparchive.org/static/images/2020/css/transition-timing-functions.png

Part | Chapter1: CSS

Animation name categories
Web Almanac 2020: CSS
desktop [l mobile
25% 21%

20%
15% 13%
’ 9%
[+)
10% 7% 6% 5% 5%
0y
5% 2% 1% 1% 1%

0 ryl)

Percent of occurrences

Animation name

Figure 1.41. Relative popularity of the categories of animation names used as a percent of
occurrences.

Visual effects

CSS also offers a huge variety of visual effects giving designers access to advanced design
techniques built into browsers that can be accessed with small amounts of code.

Blend modes

Last year, 8% of pages were using blend modes. This year, adoption has increased significantly,
with 13% of pages using blend modes on elements (mix-blend-mode), and 2% in
backgrounds (background-blend-mode).

Filters

Adoption of filters has remained high, with the filter property making an appearancein
79.43% of pages. While at first this was quite exciting, a lot of it is likely to be old IE DX filters

(-ms-filter), which shared the same property name. When we only took into account valid

CSS filters that Blink recognizes, usage drops to 22% for mobile and 20% for desktop, with
blur() beingthe most popular filter type, appearing in 4% of pages.

2020 Web Almanac by HTTP Archive 41

https://almanac.httparchive.org/static/images/2020/css/transition-animation-names.png
https://almanac.httparchive.org/static/images/2020/css/transition-animation-names.png

Part | Chapter1: CSS

Another filter property, backdrop-filter ,allows us to apply filters to only the area behind
an element, which is incredibly useful for improving contrast on translucent backgrounds, and
creating the elegant “frosted glass” effect” we've come to know from many native Uls. While
not nearly as popular as filter ,wefound backdrop-filter in 6% of pages.

The filter() function allows us to apply afilter only on a particular image, which can be
extremely useful for backgrounds. Sadly, it is currently only supported by Safari”. We did not
find any usage of filter() .

Masks

A decade ago, we got masks in Safari with -webkit-mask-image and it was exciting.
Everyone and their dog were using them. We eventually got a spec” and a set of unprefixed
properties closely modeled after the WebKit prototype, and it seemed a matter of time until
masking became standard, with a consistent syntax across all browsers. Fast forward 10 years
later, and the unprefixed syntax is still not supported in Chrome or Safari, meaning its available
on less than 5% of users’ browsers worldwide”. It is therefore no surprise that -webkit-
mask-image is still more popular than its standard counterpart, being found in 22% of pages.
However, despite its very poor support, mask-image isfound on 19% of pages. We see a
similar pattern across most other masking properties with the unprefixed versions appearing in
almost as many pages as the -webkit- ones. Overall, despite them falling out of hype, masks
are still found in nearly a quarter of the web, indicating that the use cases are still there, despite
lack of implementer interest (hint, hint!).

74. https://css-tricks.com/backdrop-filter-effect-with-css/
75. https://caniuse.com/css-filter-function

76. https://www.w3.0rg/TR/css-masking-1/

77. https://caniuse.com/css-masks

42 2020 Web Almanac by HTTP Archive

https://css-tricks.com/backdrop-filter-effect-with-css/
https://caniuse.com/css-filter-function
https://www.w3.org/TR/css-masking-1/
https://caniuse.com/css-masks
https://caniuse.com/css-masks

Part | Chapter1: CSS

Usage of mask properties
Web Almanac 2020: CSS

desktop [l mobile

-webkit-mask-image 22%

mask-size
mask-image
mask-repeat

mask-position

mask-mode

Property

-webkit-mask-size
-webkit-mask-repeat
-webkit-mask-position
-webkit-mask

mask

0% 5% 10% 15% 20% 25%

Percent of pages

Figure 1.42. Relative popularity of mask properties as a percent of occurrences.

Clipping paths

Around the same time masks got popular, another similar but simpler property (originally from
SVG) started making the rounds: clip-path .However, unlike masks, it had a brighter fate. It
got standardized fairly quickly, and got support across the board relatively fast, with the last
holdout being Safari which dropped the prefix in 2016. Today, it is found on 19% of pages
unprefixed and 13% with the -webkit- prefix.

Responsive design

Making sites that cope with the many different screen sizes and devices that browse the web
has become somewhat easier with the built-in flexible and responsive new layout methods such

2020 Web Almanac by HTTP Archive 43

https://almanac.httparchive.org/static/images/2020/css/mask-properties.png
https://almanac.httparchive.org/static/images/2020/css/mask-properties.png

Part | Chapter1: CSS

as Flexbox and Grid. These layout methods are usually further enhanced with the use of media
queries. The data shows that 80% of desktop sites and 83% of mobile sites use media queries
that are associated with responsive design, such as min-width.

Which media features are people using?

As you might expect, the most common media features in use are the viewport size features
which have been in use since the early days of responsive web design. The percentage of sites
checking for max-width is 78% for both desktop and mobile. A check for min-width
features on 75% of mobile and 73% of desktop sites.

The orientation mediafeature, which allows authors to differentiate their layout based on

whether the screen is portrait or landscape, can be found on 33% of all sites.

We are seeing some newer media features come up in the statistics. The prefers-reduced-
motion mediafeature provides a way to check if the user has requested reduced motion, so
that websites can adjust the amount of animation they use. This can be turned on either
explicitly, through a user-controlled operating system setting, or implicitly, for example due to
decreasing battery level. 24% of sites are checking for this feature.

In other good news, newer features from the Media Queries Level 4” specification are starting
to appear. On mobile 5% of sites are checking for the type of pointer the user has. A coarse
pointer indicates they are using a touchscreen, whereas a fine pointer indicates a pointing
device. Understanding the way a user is interacting with your site is often just as helpful, if not
more helpful, than looking at screen size. A person might be using a small screen device with a
keyboard and mouse, or a high resolution large screen device with a touchscreen and benefit
from larger hit areas.

78. https://www.w3.0rg/TR/mediaqueries-4/

44 2020 Web Almanac by HTTP Archive

https://web.dev/prefers-reduced-motion/
https://web.dev/prefers-reduced-motion/
https://web.dev/prefers-reduced-motion/
https://web.dev/prefers-reduced-motion/
https://www.w3.org/TR/mediaqueries-4/

Part | Chapter1: CSS

Media query features
Web Almanac 2020: CSS

max-width

desktop [l mobile

79%

min-width

75%

-webkit-min-device-pixel-ratio

45%

orientation
max-device-width
-ms-high-contrast
prefers-reduced-motion
max-height
min-resolution
-webkit-transform-3d

transform-3d

Media feature

min-device-pixel-ratio
min-height
min--moz-device-pixel-ratio
-0-min-device-pixel-ratio
min-device-width

pointer

device-width

33%
28%

24%
24%

22%
22%

15%

15%

15%
14%

13%

p— 9%

— 8%
5%

2%

0%

20% 40% 60% 80%

Percent of pages

Figure 1.43. The most popular media query features as a percent of pages.

Common breakpoints

The most common breakpoint in use across desktop and mobile devicesisa min-width of
768px. 54% of sites use this breakpoint, closely followed by a max-width of 767px at 50%.
The Bootstrap framework” usesa min-width of 768px as its “Medium” size, so this may be
the source of much of the usage. The other two high-ranking min-width values of 1200px
(40%) and 992px (37%) are also found in Bootstrap.

view,

79.

‘docs/4.1/lay

2020 Web Almanac by HTTP Archive

45

https://almanac.httparchive.org/static/images/2020/css/media-query-features.png
https://almanac.httparchive.org/static/images/2020/css/media-query-features.png
https://getbootstrap.com/docs/4.1/layout/overview/

Part | Chapter1: CSS

Most popular breakpoints
Web Almanac 2020: CSS (mobile)
min-width [} max-width

60% 50%

% 37% 9
% 35% 35%

40% o,

30% 3%

24% 23%
19%
0% I 11% I
0% I

480px 600px 767px 768px 800px 991px 992px 1024px 1199px 1200px

Percent of pages

Breakpoint

Figure 1.44. The most popular breakpoints by min-width and max-width as a percent of
mobile pages.

Pixels are very much the unit that is used for breakpoints. There are a few instances of em s a
long way down the list, however setting breakpoints in pixels appears to be the popular choice.
There are probably many reasons for this. Legacy: all of the early articles on responsive design
use pixels, and many people still think about targeting particular devices when creating
responsive designs. Sizing: using em s involves considering the size of the content rather than
the device, and this is a newer way of thinking about web design, perhaps one yet to fully be

taken advantage of along with intrinsic sizing methods for layout.

Properties used inside media queries

On mobile devices 79% and on desktop 77% of media queries are used to change the display

property. Perhaps indicating that people are testing before switching to a Flex or Grid

formatting context. Again, this may be linked frameworks, for example the Bootstrap
responsive utilities”. 78% of authors change the width property inside media queries,
margin, padding and font-size all rank highly for changed properties.

80. ‘docs/4.1/utilities/displ

46 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/breakpoints.png
https://almanac.httparchive.org/static/images/2020/css/breakpoints.png
https://zellwk.com/blog/media-query-units/
https://zellwk.com/blog/media-query-units/
https://getbootstrap.com/docs/4.1/utilities/display/
https://getbootstrap.com/docs/4.1/utilities/display/

Part | Chapter1: CSS

Most popular properties used in media queries
Web Almanac 2020: CSS
desktop [} mobile
100%

7% 9% 75% 74% 73% 72% 72% 72% 71% 71%
75%

S

of‘\ &
. . 2 5 S
& & @ & ¥ &

Percent of pages

&£
Property

Figure 1.45. The most popular properties used in media queries as a percent of pages.

Custom properties

Last year, only 5% of websites were using custom properties. This year, adoption has
skyrocketed. Using last year’s query (which only counted declarations that set custom
properties), usage has quadrupled on mobile (19.29%) and tripled on desktop (14.47%).
However, when we look at values that reference custom properties via var() ,we get an even
better picture: 27% of mobile pages and 22% of desktop pages were using the var() function
at least once, which indicates there is a sizeable number of pages only using var() to offer

customization hooks, without ever setting a custom property.

While at first glance this is impressive adoption, it appears that a major driver is WordPress, as
evidenced by the most popular custom property names, the top 4 of which ship with
WordPress.

2020 Web Almanac by HTTP Archive 47

https://almanac.httparchive.org/static/images/2020/css/media-query-properties.png
https://almanac.httparchive.org/static/images/2020/css/media-query-properties.png

Part | Chapter1: CSS

Naming

Custom property names
Web Almanac 2020: CSS (mobile)

Multirange (old version)
2.8%

WordPress

13.2%

Avada
34.9%

Elementor
15.5%

Bootstrap
31.1%

Figure 1.46. Relative popularity of custom property names per software entity as a percent of
occurrences on mobile pages.

QOut of the 1,000 top property names, fewer than 13 are “custom”, as in made up by individual
web developers. The vast majority are associated with popular software, such as WordPress,
Elementor, and Avada. To determine this, we took into account not only which custom
properties appear in what software (by searching on GitHub), but also which properties appear
in groups with similar frequencies. This does not necessarily mean that the main way a custom
property ends up on a website is through usage of that software (people do still copy and
paste!), but it does indicate there aren’t many organic commonalities between the custom
properties that developers define. The only custom property names that seem to have
organically made the list of top 1000 are --height, --primary-color,and --caption-
color.

Usage by type

The biggest usage of custom properties appears to be naming colors and keeping colors
consistent throughout. Approximately 1in 5 desktop pages and 1 in 6 mobile pages uses
custom propertiesin background-color ,and the top 11 properties that contain var()
references are either color properties or shorthands that contain colors. Lengths is the second
biggest usage, with width and height beingused with var() in 7% of mobile pages
(interestingly, only around 3% of desktop pages). This is also confirmed by the types of most

48 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/custom-property-names.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-names.png

Part | Chapter1: CSS

popular values, with color values accounting for 52% of all custom property declarations.
Dimensions (a number + a unit, e.g. lengths, angles, times etc.) were the second more popular
type, higher than unitless numbers (12%). This is despite guidance to prefer the latter, since
numbers can be converted to dimensions via calc() and multiplication, but dimensions

cannot be converted to numbers as dividing with dimensions is not supported yet.

Custom property properties
Web Almanac 2020: CSS

19% desktop [l mobile

20% 15%
15%

9% o, o o o, y
oo 8% 8% 7% 7% 7% 7% 7% 6% 6% 6% 6% 6%

5%

Percent of pages

Property

Figure 1.47. The most popular property names used with custom properties as a percent of pages.

In preprocessors, color variables are often manipulated to generate color variations, such as
different tints. However, in CSS color modification functions® are merely an unimplemented
draft. Right now, the only way to generate new colors from variables is to use variables for
individual components and plug them into color functions, suchas rgba() and hsla() .
However, fewer than 4% of mobile pages and 0.6% of desktop pages do that, indicating that the
high usage of color variables is primarily to hold entire colors, with variations thereof being
separate variables instead of dynamically generated.

81. https://drafts.csswg.org/css-color-5/

2020 Web Almanac by HTTP Archive 49

https://almanac.httparchive.org/static/images/2020/css/custom-property-properties.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-properties.png
https://drafts.csswg.org/css-color-5/

Part | Chapter1: CSS

Custom property functions
Web Almanac 2020: CSS

desktop [l mobile

calc() 7%
linear-gradient() 7%
rgba() 4%
radial-gradient() 4%
hsla() 4%
drop-shadow() 4%
5 -o-linear-gradient() |e——— 1%
g translate() f———— 1%
. -webkit-linear-gradient() |e—— 1%
scale() F 0%
-webkit-gradient() r 0%
max() ’_ 0%
to() P 0%
from() r 0%
rotate() ’. 0%
0% 2% 4% 6% 8%

Percent of pages

Figure 1.48. The most popular function names used with custom properties as a percent of pages.

Complexity

Next, we looked at how complex custom property usage is. One way to assess code complexity
in software engineering is the shape of the dependency graph. We first looked at the depth of
each custom property. A custom property set to a literal value like e.g. #fff has adepth of O,
whereas a property referencing that via var() would have a depth of 1 and so on. For example:

iroot {
--base-hue: 335; /* depth = 0 */
--base-color: hsl(var(--base-hue) 90% 50%); /* depth =1 */
--background: linear-gradient(var(--base-color), black); /* depth
=2 */
}

50 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/custom-property-functions.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-functions.png

Part | Chapter1: CSS

2 out of 3 custom properties examined (67%) had a depth of 0, and 30% had a depth of 1
(slightly less on mobile). Less than 1.8% had a depth of 2, and virtually none (0.7%) had a depth
of 3+, which indicates rather basic usage. The upside of such basic usage is that it is harder to
make mistakes: fewer than 0.5% of pages included cycles.

Custom property depth
Web Almanac 2020: CSS
desktop [l mobile
80%
60%
60%

38%
40%

20%

Percent of occurrences

0%

Depth

Figure 1.49. Distribution of depths of custom properties as a percent of occurrences.

Examining the selectors on which custom properties are declared further confirms that most
custom property usage in the wild is fairly basic. Two out of three custom property declarations
are on the root element, indicating that they are used essentially as global constants. It is
important to note that many popular polyfills have required them to be global in this vein, so

developers using said polyfills may not have had a choice.

CSS and JS

The last few years has seen a greater interaction between CSS and JavaScript, beyond the
simple setting of CSS classes and styles or off. So how much are we using technologies like
Houdini and techniques like CSS-in-JS?

2020 Web Almanac by HTTP Archive 51

https://almanac.httparchive.org/static/images/2020/css/custom-property-depth.png
https://almanac.httparchive.org/static/images/2020/css/custom-property-depth.png

Part | Chapter1: CSS

Houdini

You have likely heard of Houdini” by now. Houdini is a set of low-level APIs that exposes parts
of the CSS engine, giving developers the power to extend CSS by hooking into the styling and
layout process of a browser’s rendering engine. Since several Houdini specs have shipped in
browsers”, we figured it is time to see if they are actually used in the wild yet. Short answer: no.

And now for the longer answer...

First, we looked at the Properties & Values API”, which allows developers to register a custom
property and give it a type, an initial value, and prevent it from being inherited. One of the
primary use cases is being able to animate custom properties, so we also looked at how
frequently custom properties are being animated.

As is common with bleeding edge tech, especially when not supported in all browsers, adoption
in the wild has been extremely low. Only 32 desktop and 20 mobile pages were found to have
any registered custom properties, though this excludes custom properties that were registered
but were not being applied at the time of the crawl. Only 325 mobile pages and 330 desktop
ones (0.00%) use custom properties in animations, and most (74%) of that seems to be driven
by a Vue component®. Virtually none of those appear to have registered them, though this is
likely because the animation wasn't active at the time of the crawl, so there was no computed
style needing to be registered.

The Paint API” is a more broadly implemented Houdini spec which allows developers to create

custom CSS functions that return <image> values, e.g. to implement custom gradients or

patterns. Only 12 pages were found to be using paint () .Each worklet name (hexagon,
ruler, lozenge, image-cross, grid, dashed-line, ripple)only appeared onone

page each, so it appears the only in-the-wild use cases were likely demos.

Typed OM?, another Houdini specification, allows access to structured values instead of the
strings of the classic CSS OM. It appears to have considerably higher adoption compared to
other Houdini specs, though still low overall. It is used in 9,864 desktop pages (0.18%) and
6,391 mobile ones (0.1%). While this may seem low, to put it in perspective, these are similar
numbers to the adoption of <input type="date"> ! Note that unlike most stats in this
chapter, these numbers reflect actual usage, and not just inclusion in a website’s assets.

CSS-in-Js

There is so much discussion (or argument) about CSS-in-JS that one could assume everyone and

82. https://developer.mozilla.org/docs/Web/Houdini
83. https://ishoudinireadyyet.com/

84. mozilla.org/doc: API/CSS/RegisterProperty

85. httpsi// dev/vue- ion-ite

86. mozilla.org/doc: API/CSS_Painting_API

87. ht i com/w3c/css-houdini-drafts/blok typed README.md

52 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/Houdini
https://ishoudinireadyyet.com/
https://ishoudinireadyyet.com/
https://developer.mozilla.org/docs/Web/API/CSS/RegisterProperty
https://quasar.dev/vue-components/expansion-item
https://developer.mozilla.org/docs/Web/API/CSS_Painting_API
https://github.com/w3c/css-houdini-drafts/blob/master/css-typed-om/README.md

Part | Chapter1: CSS

their dog is using it.

Figure 1.50. The percentage of sites using any CSS-in-JS method.

However, when we looked at usage of various CSS-in-JS libraries, it turned out that only about
2% of websites use any CSS-in-JS method, with Styled Components® accounting for almost half
of that.

CSS in JS libraries
Web Almanac 2020: CSS (mobile)

Styled Jsx

1.6%

Glamor /
74%

React JSS o
8.5%

Styled Components
42.1%

Aphrodite
9.4%

Emotion
29.9%

Figure 1.51. Relative popularity of CSS-in-JS libraries as a percent of occurrences on mobile pages.

Internationalization

English, like many languages, is written in horizontal lines and the characters are laid out from
left to right. But some languages (such as Arabic and Hebrew) are mostly written right to left
and then there are languages which may be written in vertical lines, from top to bottom. Not to
mention quotations from other languages. So things can get quite complicated. Both HTML and
CSS have ways to handle this.

88. https:/styled-components.com/

2020 Web Almanac by HTTP Archive 53

https://styled-components.com/
https://almanac.httparchive.org/static/images/2020/css/css-in-js.png
https://almanac.httparchive.org/static/images/2020/css/css-in-js.png

Part | Chapter1: CSS

Direction

When text is presented in horizontal lines, most writing systems display characters from left to
right. Urdu, Arabic and Hebrew display characters from right to left, except for numbers, which
are written from left to right; they are bidirectional. Some characters—such as brackets, quote
marks, punctuation—could be used in either a left to right or a right to left context and are said
to be directionally neutral. Things get more complex when text strings of different languages
are nested in one another—English text containing a short quote in Hebrew which contains
some English words, for example. The Unicode bidirectional algorithm defines how to lay out
paragraphs of mixed-direction text, but it needs to know the base direction of the paragraph.

To support bidirectionality, explicit support for indicating direction is available in both HTML
via (the dir attribute and the <bdo> element), and CSS (the direction” and unicode-bidi
properties. We looked at usage of both HTML and CSS methods.

Only 12.14% of pages on mobile (and a similar 10.76% on desktop) set the dir attribute on
the <html> element. Which is fine: most writing systems in the world are 1tr ,and the
default dir valueis ltr .Of the pages whichdidset dir on <html>,91%setitto ltr

while 8.5% setitto rtl and0.32%to auto (the explicit direction is unknown value, mainly
useful for templates which will be filled with unknown content). An even smaller number,
2.63%,set dir on <body> thanonthe <html>.Whichis good, because setting it on
<html> also covers you for content inthe <head>, like <title>.

Why set direction using HTML attributes rather than CSS styling? One reason is separation of
concerns: direction has to do with content which is the purview of HTML. It is also the
recommended practice™ “Avoid using CSS or Unicode control codes for managing direction
where you can use markup”. After all, the stylesheet might not load, and the text still needs to

be readable.

Logical vs physical properties

Many of the first properties we are taught when we learn CSS, things like width, height,
margin-left, padding-bottom, right andso on are grounded on a specific physical
direction. However, when content needs to be presented in multiple languages with different
directionality characteristics, these physical directions are often language dependent, e.g.
margin-left oftenneedstobecome margin-right inaright-to-left language such as
Arabic. Directionality is a 2D characteristic. For example, height may need to become

width when we are presenting content in vertical writing (such as traditional Chinese).

89. https://www.w3.0rg/TR/css-writing-modes-3/#direction
90. https://www.w3.org/International, ials/bidi-xhtml/index.en

54 2020 Web Almanac by HTTP Archive

https://html.spec.whatwg.org/multipage/dom.html#the-dir-attribute
https://html.spec.whatwg.org/multipage/dom.html#the-dir-attribute
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-bdo-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-bdo-element
https://www.w3.org/TR/css-writing-modes-3/#direction
https://www.w3.org/TR/css-writing-modes-3/#unicode-bidi
https://www.w3.org/TR/css-writing-modes-3/#unicode-bidi
https://www.w3.org/International/tutorials/bidi-xhtml/index.en

Part | Chapter1: CSS

In the past, the only solution to these problems was a separate stylesheet with overrides for
different writing systems. However, more recently CSS has acquired logical properties and
values that work just like their physical counterparts but are sensitive to the directionality of
their context . For example, instead of width we could write inline-size,and instead of

left wecouldusethe inset-inline property. In addition to logical properties, there are
also logical keywords, suchas float: inline-start insteadof float: left.

While these properties are fairly well supported” (with some exceptions), they are not used
very much outside of user agent stylesheets. None of the logical properties were used on more
than 0.6% of pages. Most usage was to specify margins and paddings. Logical keywords for
text-align were used on 2.25% of pages, but apart from that, none of the other keywords
were even encountered at all. This is by large driven by browser support: text-align:
start and end have fairly good browser support” whereas logical keywords for clear and

float areonly supported in Firefox.

Browser support

A perennial problem with the web platform is how to introduce new features and extend the
platform. CSS has seen us moving from vendor prefixes to feature queries as a better way of
introducing change so we wanted to look at how those two techniques were being used.

Vendor prefixes

91.05%

Figure 1.52. Percent of mobile pages using any vendor prefixed feature.

Even though prefixing is now recognized as a failed way to introduce experimental features to
developers, and browsers have largely stopped using it, opting for flags instead, a whopping
91% of pages still use at least one prefixed feature.

91. https://caniuse.com/css-logical-props
92. https://caniuse.com/mdn-css_properties_text-align_flow._relative_values_start_and_end

2020 Web Almanac by HTTP Archive 55

https://developer.mozilla.org/docs/Web/CSS/CSS_Logical_Properties
https://developer.mozilla.org/docs/Web/CSS/CSS_Logical_Properties
https://developer.mozilla.org/docs/Web/CSS/inset-inline
https://developer.mozilla.org/docs/Web/CSS/inset-inline
https://caniuse.com/css-logical-props
https://caniuse.com/mdn-css_properties_text-align_flow_relative_values_start_and_end

Part | Chapter1: CSS

Vendor-prefixed features by type
Web Almanac 2020: CSS

desktop [l mobile
[+)
100% 91%

77% 77%
75% 65% 1%
52%
50%
25%
0%

properties keywords pseudo-elements functions pseudo-classes media

Percent of pages

Vendor-prefixed feature

Figure 1.53. The most popular vendor-prefixed features by type as a percent of pages.

Prefixed properties take up the lion’s share of that, since 84% of all prefixed features used were
properties and these were used on 90.76% of mobile pages, and 89.66% of desktop pages. This
is most likely a remnant of the prefix-happy CSS3 era circa 2009-2014. This is also evident from
the most popular prefixed ones, none of which have actually needed prefixes since 2014:

56 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-features.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-features.png

Part | Chapter1: CSS

Most popular vendor-prefixed properties
Web Almanac 2020: CSS

desktop [l mobile

19%

-*-transform

12%

-*-transition

-*-border-radius 9%

-*-box-shadow 8%
Suser-select o 5%
-box-SIZING — 5%
-“-animation | —— 4%
SHfilter — 3%

-"-font-smoothing |eeees 2%

-*-backface-visibility s 29

Property

-*-appearance 2%
-*-flex P 2%
-*-transform-origin F 1%
-*-osx-font-smoothing P 1%
-*-animation-name P 1%
-*-background-size P 1%
-*-transition-property P 1%
-*-tap-highlight-color F 1%
0% 5% 10%

15% 20%

Percent of occurrences

Figure 1.54. Relative popularity of properties that are most used with vendor prefixes, as a percent
of occurrences.

Some of these prefixes, like -moz-border-radius , haven't been useful since 2011. Even
more mind-boggling, other prefixed properties that never existed, are still moderately common,

with roughly 9% of all pages including -o-border-radius !

It may come as no surprise that -webkit- is by far the most popular prefix, with half of

prefixed properties using it:

57

2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-properties.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-properties.png

Part | Chapter1: CSS

Most popular vendor prefixes
Web Almanac 2020: CSS

49% desktop [l mobile
50%
40%
8
o
5
e o
£ 0% 23%
8 19%
S 20%
c
g 8%
S 10%
I 1% 0% 0% 0%
0% —
-webkit- -moz- -ms- -0- -khtml- -pie- -js- -ie-

Vendor prefix

Figure 1.55. Relative popularity of vendor prefixes, as a percent of occurrences.

Prefixed pseudo-classes are not nearly as common as properties, with none of them being used
in more than 10% of pages. Nearly two thirds of all prefixed pseudo-classes overall are for
styling placeholders. In contrast, the standard :placeholder-shown pseudo-classis barely

used, encountered in less than 0.34% of pages.

58 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/top-vendor-prefixes.png
https://almanac.httparchive.org/static/images/2020/css/top-vendor-prefixes.png

Part | Chapter1: CSS

Most popular vendor-prefixed pseudo-classes
Web Almanac 2020: CSS

desktop [l mobile

:-ms-input-placeholder 10%
-moz-placeholder
:-moz-focusring
:-webkit-full-screen
-moz-full-screen
:-moz-any-link
» -webkit-autofill
[7]
Ko
Q -0-prefocus
o
=
2 -ms-fullscreen
o
:-ms-input-placeholde 0%
-ms-lang 0%
-moz-ui-invalid 0%
-webkit-input-placeholder 0%
-moz-input-placeholder 0%
-webkit-any-link 0%
0% 3% 5% 8% 10% 13%
Percent of pages
Figure 1.56. The most popular vendor-prefixed pseudo-classes as a percent of pages.
The most common prefixed pseudo-elementis ::-moz-focus-inner ,used todisable

Firefox’s inner focus ring. It makes up almost a quarter of prefixed pseudo-elements and for
which there is no standard alternative. Another quarter of prefixed pseudo-elements is yet
again for styling placeholders, while the standard version, : :placeholder, trails far behind,

used in only 4% of pages.

The remaining half of prefixed pseudo-elements is primarily devoted to styling scrollbars and
Shadow DOM of native elements (search inputs, video & audio controls, spinner buttons,
sliders, meters, progress bars). This indicates a strong developer need for customization of
built-in Ul controls, for which standards-compliant CSS still falls short, although there are

2020 Web Almanac by HTTP Archive

59

https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-classes.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-classes.png

Part | Chapter1: CSS

multiple ongoing” CSS WG discussions™ to ameliorate that.

Usage of prefixed pseudo-elements by category
Web Almanac 2020: CSS

desktop [l mobile

placeholder 29%
focus ring 21%
scrollbar 11%
search input 10%

media controls E— s —— 8%
spinner 7%
other ' 3%
selection | 3%

slider

clear button E— 3%
progress bar ’_ 2%

file upload ’_ 1%
date picker 0%

Pseudo-element

validation 0%

meter 0%
details marker 0%

resizer 0%
0% 10% 20% 30%

Percent of occurrences

Figure 1.57. Usage of prefixed pseudo-elements by category.

It is no secret that Chrome and Safari have been way more prefix-happy, but it is especially true
with pseudo-elements: nearly half of all prefixed pseudo-elements we found had a -webkit-

prefix.
93. -//gi com/w3c/csswg fts/i 410
o4, ithub.com/w3c/cssws-drafts/issues/5187

60 2020 Web Almanac by HTTP Archive

https://github.com/w3c/csswg-drafts/issues/4410
https://github.com/w3c/csswg-drafts/issues/5187
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-elements.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefix-pseudo-elements.png

Part | Chapter1: CSS

Pseudo-element vendor prefixes
Web Almanac 2020: CSS

other

-ms-

-webkit-

-moz

Figure 1.58. Relative popularity of pseudo-element vendor prefixes as a percent of occurrences on
mobile pages.

Nearly all usage of prefixed functions (98%) is to specify gradients, even though this has not
been necessary since 2014”. The most popular of these is -webkit-linear-gradient()
used in over a quarter of pages examined. The remaining <2% is primarily for calc, for which a

prefix has not been necessary since 2013,

98.22%

Figure 1.59. Percent of gradient functions across all occurrences of vendor-prefixed functions in
mobile pages.

Usage of prefixed media features is lower overall, with the most popular one, -webkit-min-
pixel-ratio usedin 13% of pages to detect “Retina” displays. The corresponding standard
media feature, resolution has finally surpassed it in popularity and is used in 22% of mobile
pages and 15% desktop pages.

Overall, -*-min-pixel-ratio comprises three quarters of prefixed media features on
desktop and about half on mobile. The reason for the difference is not reduced mobile usage,
but that another prefixed media feature, -*-high-contrast,isfar more popular on mobile

95. https://caniuse.com/css-gradients
96. https://caniuse.com/calc

2020 Web Almanac by HTTP Archive

61

https://almanac.httparchive.org/static/images/2020/css/top-pseudo-element-prefixes.png
https://almanac.httparchive.org/static/images/2020/css/top-pseudo-element-prefixes.png
https://caniuse.com/css-gradients
https://caniuse.com/css-gradients
https://caniuse.com/calc
https://caniuse.com/calc
https://developer.mozilla.org/docs/Web/CSS/@media/resolution
https://developer.mozilla.org/docs/Web/CSS/@media/resolution

Part | Chapter1: CSS

making up almost the entire other half of prefixed media features, but only 18% on desktop.
The corresponding standard media feature, forced-colors” is still experimental and behind a
flag in Chrome and Firefox and did not appear at all in our analysis.

Vendor-prefixed media features
Web Almanac 2020: CSS

@ min-device-pixel-ratio high-contrast transform-3d device-pixel-ratio
max-device-pixel-ratio other

Figure 1.60. Relative popularity of vendor-prefixed media features as a percent of occurrences on
mobile pages.

Feature queries

Feature queries (@supports) have been steadily gaining traction for the past few years, and
were used in 39% of pages, a notable increase from last year’s 30%.

But what are they used for? We looked at the most popular queries. The results may come as a
big surprise—it was to us! We expected Grid-related queries to top the list, but instead, the
most popular feature queries by far are for position: sticky ! They comprise half of all
feature queries and are used in about a quarter of pages. In contrast, Grid-related queries
account for only 2% of all queries, indicating that developers feel comfortable enough with
Grid’s browser support that they don’t need to use it only as progressive enhancement.

What is even more mysterious is that position: sticky itselfis not used as much as the
feature queries about it, appearing in 10% of desktop pages and 13% of mobile pages. So there
are over half a million pages that detect position: sticky without ever usingit! Why?!

97. mozilla.org/docs/Web/CSS, dia/forced-colors

62 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/@media/forced-colors
https://almanac.httparchive.org/static/images/2020/css/vendor-prefixed-media.png
https://almanac.httparchive.org/static/images/2020/css/vendor-prefixed-media.png
https://developer.mozilla.org/docs/Web/CSS/@supports

Part | Chapter1: CSS

Lastly, it was encouraging to see max () already inthe top 10 most detected features,
appearing in 0.6% of desktop pages and 0.7% of mobile pages. Given that max() (and min() ,
and clamp()) was only supported across the board this year”, it is quite impressive adoption
and highlights how desperately developers needed this.

A small but notable number of pages (around 3000 or 0.05%) were oddly using @supports
with CSS 2 syntax, suchas display: block or padding: ©Opx,syntaxthat existed well
before @supports wasimplemented. It is unclear what this was meant to achieve. Perhaps it
was used to shield CSS rules from old browsers that don’t implement @supports ?

Most popular features queried
Web Almanac 2020: CSS

49% desktop [l mobile
50%

40%
30%
20%

10% 1% 1% 1% 1% 0%

0%

Percent of @supports occurrences

o N ° W O ae® e F\ S @
e o N N 3 QW) 2 . of N
o 6\(\,\«‘ o (< o & of e
o \‘e&o\“ 5\0‘(\‘) @ PR
o (¢
Feature

Figure 1.61. Relative popularity of @supports features queried as a percent of occurrences.

Meta

Up until now we've looked at what CSS developers have used, but in this section we want to

look more about how they are using it.

Declaration repetition

To tell how efficient and maintainable a stylesheet is, one rough factor is declaration repetition,
that is, the ratio between unique (different) and total number of declarations. The factor is a

98. https://caniuse.com/mdn-css_types_max

2020 Web Almanac by HTTP Archive 63

https://caniuse.com/mdn-css_types_max
https://almanac.httparchive.org/static/images/2020/css/supports-criteria.png
https://almanac.httparchive.org/static/images/2020/css/supports-criteria.png

Part | Chapter1: CSS

rough one because it is not trivial to normalize declarations (border: none, border: 0,
even border-width: 0 —plus afew more—are all different but say the same thing), and also
because there are levels for the repetition: media query (most useful but harder to measure),
stylesheet, or data set level as with the Almanac’s overall metrics.

We did look at declaration repetition and found that the median web page, on mobile, uses a
total of 5,454 declarations, of which 2,398 are unique. The median ratio (which is based on the
data set, not these two values) comes out at 45.43%. What this means is that on the median
page, each declaration is used roughly two times.

Percentile Unique / Total

10 30.97%
50 45.43%
90 63.67%

Figure 1.62. Distribution of repetition ratios on mobile pages.

These ratios are better, then, than what we know from scarce previous data. In 2017, Jens
Oliver Meiert sampled 220 popular websites” and came out with the following averages: 6,121
declarations, of which 1,698 were unique, and a unique/total ratio of 28% (median 34%). The
topic could need further investigation, but from the little we know so far, declaration repetition
is tangible—and may have either improved or be more of a problem for the more popular and
likely larger sites.

Shorthands and longhands

Some shorthands are more successful than others. Sometimes the shorthand is sufficiently easy
to use and its syntax memorable, that we end up only using the longhands intentionally, when
we want to override certain values independently. And then there are these shorthands that
are hardly ever used because their syntax is too confusing.

Shorthands before longhands

Some shorthands are more successful than others. Sometimes the shorthand is sufficiently easy
to use and its syntax memorable, that we end up only using the longhands intentionally, when
we want to override certain values independently. And then there are these shorthands that

are hardly ever used because their syntax is too confusing. Using a shorthand and overriding it

99. https://meiert.c blog/70-percent-c:

64 2020 Web Almanac by HTTP Archive

https://meiert.com/en/blog/70-percent-css-repetition/

Part | Chapter1: CSS

with a few longhands in the same rule is a good strategy for a variety of reasons:

First, it is good defensive coding. The shorthand resets all its longhands to their initial values if
they have not been explicitly specified. This prevents rogue values coming in through the
cascade.

Second, it is good for maintainability, to avoid repetition of values when the shorthand has
smart defaults. For example, instead of margin: lem lem O lem we canwrite:

margin: lem;

margin-bottom: 0;

Similarly, for list-valued properties, longhands can help us reduce repetition when a value is the
same across all list values:

background: url("one.png"), url("two.png"), url("three.png");

background-repeat: no-repeat;

Third, for cases where parts of the shorthand’s syntax are too weird, longhands can help
improve readability:

/* Instead of: */

background: url("one.svg") center / 50% 50% content-box border-box;

/* This is more readable: */
background: url("one.svg") center;
background-size: 50% 50%;
background-origin: content-box;

background-clip: border-box;

So how frequently does this occur? Very, as it turns out. 88% of pages use this strategy at least
once. By far, the most frequent longhand this happens with is background-size , accounting
for 40% of all longhands that come after their shorthand, indicating that the slash syntax for

background-size in background may not have been the most readable or memorable
syntax we could have come up with. No other longhand comes close to this frequency. The
remaining 60% is a long tail spread across many other properties evenly.

2020 Web Almanac by HTTP Archive 65

Part | Chapter1: CSS

Most popular longhand properties after shorthands
Web Almanac 2020: CSS

desktop [l mobile

background-size 1%

background-image e 6%
margin-bottom P 4%
margin-top F 4%
border-bottom-color F 3%

font-size 3%

Property

border-top-color F 3%
background-color F 2%
padding-left F 2%
margin-left F 2%

0% 10% 20% 30% 40% 50%
Percent of occurrences

Figure 1.63. Most popular longhands that come after their shorthands in the same rule.

font

The font shorthand is fairly popular (used 49 million times on 80% of pages) but used far less
than most of its longhands (except font-variant and font-stretch). Thisindicates that
most developers are comfortable using it (since it appears on so many websites). Developers
often need to override specific typographic aspects on descendant rules, which likely explains

why the longhands are used so much more.

66 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/most-popular-longhand-after-shorthand.png
https://almanac.httparchive.org/static/images/2020/css/most-popular-longhand-after-shorthand.png

Part | Chapter1: CSS

Usage of font shorthand vs longhands
Web Almanac 2020: CSS

desktop [l mobile

font-weight 95%
font-family 95%
font-size 94%
2 line-height 93%
é’_ font-style 92%
o font 80%
font-variant 43%
font-stretch . 8%
0% 25% 50% 75% 100%
Percent of pages
Figure 1.64. Adoption of font shorthand and longhand properties.
background

As one of the oldest shorthands, background is also highly used, appearing 1 billion times in
92% of pages. it is used more frequently than any of its longhands except background-
color ,whichisused 1.5 billion times, in roughly the same number of pages. However, this
doesn’'t mean developers are fully comfortable with all of its syntax: nearly all (>90%) of
background usage is very simple, with one or two values, most likely colors and images or
images and positions. For anything further, the longhands are seen as more self-explanatory.

2020 Web Almanac by HTTP Archive

67

https://almanac.httparchive.org/static/images/2020/css/font-shorthands.png
https://almanac.httparchive.org/static/images/2020/css/font-shorthands.png

Part | Chapter1: CSS

Usage of background shorthand vs longhands
Web Almanac 2020: CSS

desktop [mobile

background 92%
background-color 92%
background-image 87%
= background-position 85%
[
5 background-repeat 84%
o
background-size
background-clip
background-attachment 38%
background-origin
0% 25% 50% 75% 100%
Percent of pages
Figure 1.65. Usage comparison of the background shorthand and its longhands.
Margins and paddings

Boththe margin and padding shorthands, as well as their longhands were some of the most
highly used CSS properties. Padding is considerably more likely to be specified as a shorthand
(1.5B uses for padding vs 300-400M for each shorthand), whereas there is less of a
difference for margin (1.1B uses of margin vs 500-800M for each of its longhands). Given the
initial confusion of many CSS developers about the clockwise order of values in these
shorthands and the repetition rule for 2 or 3 values, we expected that most of these uses of the
shorthands would be simple (1 value), however we saw the entire range of 1,2,3 or 4 values.
Obviously 1 or 2 values were more common, but 3 or 4 were not at all uncommon, occurring in

over 25% of margin usesand over 10% of padding usage.

68 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/background-shorthand-versus-longhand.png
https://almanac.httparchive.org/static/images/2020/css/background-shorthand-versus-longhand.png

Part | Chapter1: CSS

Usage of margin/padding shorthands vs longhands
Web Almanac 2020: CSS

desktop [l mobile

padding 94%
margin 93%
margin-left 92%

. margin-top 91%

£ -

g margin-right 91%

o .

& margin-bottom 91%
padding-left 20%
padding-top 89%

padding-bottom 89%
padding-right 88%
75% 100%

0% 25% 50%
Percent of pages

Figure 1.66. Usage comparison of the margin & padding shorthands and their longhands.

Flex

Nearly all flex, flex-* properties are very highly used, appearing in 30-60% of pages.
However, both flex-wrap and flex-direction areused far more than their shorthand,

flex-flow.When flex-flow isused,itis used with two values, i.e. as a shorter way to set

both of its longhands. Despite the elaborate sensible defaults™ for using flex with one or two

values, around 90% of usage consists of the 3 value syntax, explicitly setting all three of its

longhands.

100. https://developer.mozilla.org/docs/Web/CSS/
fl stext=The%20flex%20) 20may%20be%20specified%20using%200ne%2C%20two%2C%200r%20three%20values

2020 Web Almanac by HTTP Archive

69

https://almanac.httparchive.org/static/images/2020/css/margin-padding-shorthand-vs-longhand.png
https://almanac.httparchive.org/static/images/2020/css/margin-padding-shorthand-vs-longhand.png
https://developer.mozilla.org/docs/Web/CSS/flex#Syntax:~:text=The%20flex%20property%20may%20be%20specified%20using%20one%2C%20two%2C%20or%20three%20values

Part | Chapter1: CSS

Usage of flex shorthands vs longhands
Web Almanac 2020: CSS

desktop [l mobile

100%
75%
. 60% 58% 56% .
8 52%
b4 44%
5 50% 37%
= 30%
8
£ 25%
0%
flex-direction flex-wrap flex flex-grow flex-basis flex-shrink flex-flow
Property
Figure 1.67. Usage comparison of the flex shorthands and their longhands.
Grid

Did you know that grid-template-columns, grid-template-rows, and grid-
template-areas areactually shorthands of grid-template ? Did you know that there’s a
grid property and all of those are some of its longhands? No? Well, you’re in good company:
neither do most developers. The grid property was only used in 5,279 websites (0.08%) and
grid-template on 8,215 websites (0.13%). In comparison, grid-template-columns is
used in 1.7 million websites, over 200 times more!

70 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/flex-shorthand-vs-longhand.png
https://almanac.httparchive.org/static/images/2020/css/flex-shorthand-vs-longhand.png

Part | Chapter1: CSS

Usage of grid, grid-* properties
Web Almanac 2020: CSS

desktop [l mobile

grid-template-col... 26%
grid-template-rows 24%
grid-column 20%
grid-row 19%
grid-area 6%
grid-template-ar... e — ——— 6%
grid-gap 5%
grid-column-gap m— 3%
grid-row-gap e 3%
grid-column-end ’_ 2%
grid-column-start 9
grid-row-start : %‘;:
grid-row-end — 2%
grid-auto-columns p— 2%
grid-auto-rows 1%
grid-auto-flow 1%
grid-template 0%
gid | 0%
grid-column-span 0%
grid-columns 0%
grid-rows 0%
0% 10% 20% 30%

Property

Percent of pages

Figure 1.68. Usage comparison of the grid shorthands and their longhands.

CSS mistakes

As with any complex, evolving platform not everything is done correctly. So let’s look at some of

the mistakes developers are making out there.

Syntax errors

For most of the metrics in this chapter, we used Rework™, a CSS parser. While this helps
dramatically improve accuracy, it also means we could be less forgiving of syntax errors
compared to a browser. Even if one declaration in the entire stylesheet has a syntax error,
parsing would fail, and that stylesheet would be left out of the analysis. But how many

101. https:/github.com/reworkcss/css

2020 Web Almanac by HTTP Archive 7

https://almanac.httparchive.org/static/images/2020/css/usage-of-grid-properties.png
https://almanac.httparchive.org/static/images/2020/css/usage-of-grid-properties.png
https://github.com/reworkcss/css

Part | Chapter1: CSS

stylesheets do contain such syntax errors? Quite substantially more on desktop than mobile it

turns out! More specifically, nearly 10% of stylesheets found on desktop pages included at least

one unrecoverable syntax error, whereas only 2% of mobile. Do note that these are essentially

lower bounds for syntax errors, since not all syntax errors actually cause parsing to fail. For

example, a missing semicolon would just result in the next declaration being parsed as part of

the value (e.g. {property: "color", value: "red background: yellow"}),itwould

not cause the parser to fail.

Nonexistent properties

We also looked at most common nonexistent properties, by using a list of known properties.

We excluded prefixed properties from this part of the analysis, and manually excluded

unprefixed proprietary properties (e.g. Internet Explorer’s behavior , which oddly still

appears on 200K websites). Out of the remaining nonexistent properties:

37% of them were a mangled form of a prefixed property (e.g. webkit-
transition or -transition)

43% were an unprefixed form of a property that only exists only prefixed (e.g.

font-smoothing , which appeared on 384K websites), probably included for
compatibility under the incorrect assumption that it is standard, or due to wishful
thinking that it will become standard.

A typo that has found its way to a popular library. Through this analysis, we found
that the property white-wpace was presentin 234,027 websites. This is way too
many websites for the same typo to have occurred organically, so we decided to
look into it. And lo and behold, it turns out™ it was the Facebook widget! The fix is

already in.

And another oddity: The property font-rendering appearson 2,575 pages.
However, we cannot find evidence of such a property existing, with or without a
prefix. There is the nonstandard -webkit-font-smoothing which is wildly
popular, appearing in 3 million websites, or about 49% of pages, but font-
rendering is not sufficiently close to be a misspelling. Thereis text-rendering
which is used in about 100K of websites, so it is conceivable that 2.5K developers all
misremembered and coined a portmanteau of font-smoothing and text-
rendering .

102. https://x.com/rick_viscomi/status/1326739379533000704

72

2020 Web Almanac by HTTP Archive

https://x.com/rick_viscomi/status/1326739379533000704
https://medium.com/better-programming/improving-font-rendering-with-css-3383fc358cbc
https://medium.com/better-programming/improving-font-rendering-with-css-3383fc358cbc
https://developer.mozilla.org/docs/Web/CSS/text-rendering
https://developer.mozilla.org/docs/Web/CSS/text-rendering

Part | Chapter1: CSS

Most popular unknown properties
Web Almanac 2020: CSS

14% desktop [l mobile

1% 12% 12%
10% 10%

10%

5 n/ﬂ

00/0

Percent of pages

Unknown property

Figure 1.69. Most popular unknown properties.

Longhands before shorthands

Using longhands after shorthands is a nice way to use the defaults and override a few
properties. It is especially useful with list-valued properties, where using a longhand helps us
avoid repeating the same value multiple times. The opposite on the other hand—using
longhands before shorthands—is always a mistake, since the shorthand will overwrite the
longhand. For example, take a look at this:

background-color: rebeccapurple; /* longhand */

background: linear-gradient(white, transparent); /* shorthand */

This will not produce a gradient from white to rebeccapurple,butfrom white to
transparent .The rebeccapurple background color will be overwritten by the
background shorthand that comes after it that resets all its longhands to their initial values.

There are two main reasons that developers make this kind of mistake: either a
misunderstanding about how shorthands work and which longhand is reset by which
shorthand, or simply leftover cruft from moving declarations around.

So how common is this mistake? Surely, it cannot be that common in the top 6 million websites,

2020 Web Almanac by HTTP Archive 73

https://almanac.httparchive.org/static/images/2020/css/most-popupular-unknown-properties.png
https://almanac.httparchive.org/static/images/2020/css/most-popupular-unknown-properties.png

Part | Chapter1: CSS

right? Wrong! It turns out, it is exceedingly common, occurring at least once in 54% of websites!

This kind of confusion seems to happen way more with the background shorthand than any
other shorthand: over half (55%) of these mistakes involve putting background-* longhands
before background . In this case, this may actually not be a mistake at all, but good
progressive enhancement: Browsers that don’t support a feature -- such as linear gradients --
will render the previously defined longhand values, in this case, a background color. Browsers
that do understand the shorthand override the longhand value, either implicitly or explicitly.

Most popular shorthands after longhands
Web Almanac 2020: CSS

desktop [l mobile

55%

w

8

3

5

Q

3

5 5%
[=

8

5 | .

‘(‘v}\
&
Shorthand property
Figure 1.70. Most popular shorthands after longhands.
Sass

While analyzing CSS code tells us what CSS developers are doing, looking at preprocessor code
can tell us a bit about what CSS developers want to be doing, but can’t, which in some ways is
more interesting. Sass consists of two syntaxes: Sass, which is more minimal, and SCSS, which is
closer to CSS. The former is falling out of favor and is not used very much today, so we only
looked at the latter. We used CSS files with sourcemaps to extract and analyze SCSS stylesheets
in the wild. We chose to look at SCSS because it is the most popular preprocessing syntax,
based on our analysis of sourcemaps.

We've known for a while that developers need color modification functions and are working on

74 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/most-popupular-shorthands-after-longhands.png
https://almanac.httparchive.org/static/images/2020/css/most-popupular-shorthands-after-longhands.png

Part | Chapter1: CSS

them in CSS Color 5. However, analyzing SCSS function calls gives us hard data to prove just
how necessary color modification functions are, and also tells us which types of color
modifications are most commonly needed.

Overall, over one third of all Sass function calls are to modify colors or extract color
components. Virtually all color modifications we found were rather simple. Half were to make
colors darker. Infact, darken() was the most popular Sass function call overall, used even
more than the generic if () ! It appears that acommon strategy is to define bright core colors,
and use darken() to create darker variations. The opposite, making them lighter, is less
common, with only 5% of function calls being lighten() ,though that was still the 6th most
popular function overall. Functions that change the alpha channel were about 4% of overall
function calls and mixing colors makes up 3.5% of all function calls. Other types of color
modifications such as adjusting hue, saturation, red/green/blue channels, or the more complex
adjust-color() were used very sparingly.

103. https://drafts.csswg.org/css-color-5/

2020 Web Almanac by HTTP Archive 75

https://drafts.csswg.org/css-color-5/

Part | Chapter1: CSS

Most popular Sass function calls
Web Almanac 2020: CSS

desktop [l mobile

(other) 23%
darken

if
map-keys
percentage

map-get

lighten

Function name

nth
mix
length

type-of

(alpha
adjustment)

0% 10% 20% 30% 40%

Percent of function calls

Figure 1.71. Most popular Sass function calls.

Defining custom functions is something that has been discussed for years in Houdini*, but
studying Sass stylesheets gives us data on how common the need is. Quite common, it turns out.
At least half of SCSS stylesheets studied contain custom functions, since the median SCSS sheet
contains not one, but two custom functions.

There are also recent™ discussions™ in the CSS WG about introducing a limited form of
conditionals, and Sass gives us some data on how commonly this is needed. Almost two thirds of
SCSS sheets contain at least one @if block, making up almost two thirds of all control flow
statements. Thereisalsoan if() function for conditionals within values, which is the second
most common function used overall (14%).

104. i com/w3c/css-houdini-drafts/i 57
105. -//gi com/w3c/c: i 5009
106. i com/w3c/csswg-drafts/i 5624

76 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/most-popupular-sass-function-calls.png
https://almanac.httparchive.org/static/images/2020/css/most-popupular-sass-function-calls.png
https://github.com/w3c/css-houdini-drafts/issues/857
https://github.com/w3c/csswg-drafts/issues/5009
https://github.com/w3c/csswg-drafts/issues/5624

Part | Chapter1: CSS

Usage of control flow statements in SCSS
Web Almanac 2020: CSS
desktop [l mobile

80%
63%

2 55% 559
§ 60% %
=
3
8 40%
&
a
ks
S 20%
<
2 2%

0%

@for @each @while

Control flow statement

Figure 1.72. Usage of control flow statements in SCSS.

Another future spec that is currently worked on is CSS Nesting™, which will afford us the ability
to nest rules within other rules similarly to what we can do in Sass and other preprocessors by
using & . How commonly is nesting used in SCSS sheets? Very, it turns out. The vast majority of
SCSS sheets use at least one explicitly nested selector, with pseudo-classes (e.g. &:hover) and
classes (e.g. &.active) making up three quarters of it. And this does not account for implicit
nesting, where a descendant is assumed, and the & character is not required.

107. https://drafts.csswg.org/css-nesting/

2020 Web Almanac by HTTP Archive 77

https://almanac.httparchive.org/static/images/2020/css/usage-of-control-flow-statements-scss.png
https://almanac.httparchive.org/static/images/2020/css/usage-of-control-flow-statements-scss.png
https://drafts.csswg.org/css-nesting/

Part | Chapter1: CSS

Usage of explicit nesting in SCSS
Web Almanac 2020: CSS

desktop [l mobile
100% 9,
85% g3 80%
0,
75% 66% 62%
50%

- 15%

0%

Percent of pages with SCSS

Nested selector

Figure 1.73. Usage of explicit nesting in SCSS.

Conclusion

Whew! That was a lot of data! We hope you have found it as interesting as we did, and perhaps
even formed your own insights about some of them.

One of our takeaways was that popular libraries such as WordPress, Bootstrap, and Font
Awesome are primary drivers behind adoption of new features, while individual developers
tend to be more conservative.

Another observation is that there is more old code on the web than new code. The web in
practice spans a huge range, from code that could have been written 20 years ago to bleeding
edge tech that only works in the latest browsers. What this study showed us, though, is that
there are powerful features that are often misunderstood and underused, despite good
interoperability.

It also showed us some of the ways that developers want to use CSS but can’t and gave us some
insight on what they find confusing. Some of this data will be brought back to the CSS WG to
help drive CSS’s evolution, because data-driven decisions are the best kind of decisions.

78 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/css/usage-of-explicit-nesting-in-scss.png
https://almanac.httparchive.org/static/images/2020/css/usage-of-explicit-nesting-in-scss.png

Part | Chapter1: CSS

We are excited about the ways that this analysis could have further impact in the way we

develop websites and looking forward to seeing how these metrics develop over time!

Authors

Lea Verou

X @leaverou) LeaVerou @ https://leaverou.me/

Lea teaches HCI & web programming™ and researches how to make web
programming easier” at MIT™. She is a bestselling technical author™ and

112

experienced speaker'™, She is passionate about open web standards and is a
longtime CSS Working Group™ member. Lea has started several popular open
source projects and web applications™, such as Prism™, and Awesomplete™. She

tweets @leaverou and blogs at leaverou.me™.

Chris Lilley

X @svgeesus €) svgeesus @ https://svgees.us

Chris Lilley is a Technical Director at the World Wide Web Consortium (W3C).
Considered “the father of SVG”, he also co-authored PNG, was co-editor of CSS2,
chaired the group that developed @font-face,and co-developed WOFF. Ex
Technical Architecture Group. Chris is still trying to get Color Management on the
web, sigh. Currently working on CSS levels 3/4/5 (no, really), Web Audio, and
WOFF2.

Rachel Andrew

X @rachelandrew) rachelandrew @ https://rachelandrew.co.uk

I'm a web developer, writer, public speaker. Co-founder of Perch CMS™ and
Notist™. Member of the CSS Working Group™. Editor in Chief of Smashing
Magazine™.

108. https://designftw.mit.edu

109. https://mavo.io
110. https://mit.edu

111, https;

com/CSS-Secrets-Lea-\ dp/1449372635 20

112. https://leaverou.me/speaking

113. https://www.w3.0rg/Style/CSS/members.en.php3
114. https://github.com/leaverou

115. https://prismjs.com

116. ht

117. https://leaverou.me
118. https://grabaperch.com

119. https:/noti.st

120. https://www.w3.org/wiki/CSSWG
121. https://www.smashingmagazine.com/

2020 Web Almanac by HTTP Archive 79

https://x.com/leaverou
https://github.com/LeaVerou
https://lea.verou.me/
https://designftw.mit.edu/
https://mavo.io/
https://mavo.io/
https://mit.edu/
https://www.amazon.com/CSS-Secrets-Lea-Verou/dp/1449372635?tag=leaverou-20
https://lea.verou.me/speaking
https://www.w3.org/Style/CSS/members.en.php3
https://github.com/leaverou
https://github.com/leaverou
https://prismjs.com/
https://github.com/leaverou/awesomplete
https://x.com/leaverou
https://lea.verou.me/
https://x.com/svgeesus
https://github.com/svgeesus
https://svgees.us/
https://x.com/rachelandrew
https://github.com/rachelandrew
https://rachelandrew.co.uk/
https://grabaperch.com/
https://noti.st/
https://www.w3.org/wiki/CSSWG
https://www.smashingmagazine.com/
https://www.smashingmagazine.com/

80

2020 Web Almanac by HTTP Archive

Part | Chapter 2 : JavaScript

Partl Chapter 2
JavasScript

Written by Tim Kadlec

Reviewed by Sawood Alam and Artem Denysov
Analyzed by Rick Viscomi and Paul Calvano
Edited by Rick Viscomi

Introduction

JavaScript has come a long way from its humble origins as the last of the three web
cornerstones—alongside CSS and HTML. Today, JavaScript has started to infiltrate a broad
spectrum of the technical stack. It is no longer confined to the client-side and it’s an increasingly
popular choice for build tools and server-side scripting. JavaScript is also creeping its way into

the CDN layer as well thanks to edge computing solutions.

Developers love us some JavaScript. According to the Markup chapter, the script elementis
the 6th most popular HTML element in use (ahead of elements like p and i, among countless
others). We spend around 14 times as many bytes on it as we do on HTML, the building block of
the web, and 6 times as many bytes as CSS.

2020 Web Almanac by HTTP Archive 8l

Part | Chapter 2: JavaScript

Median page weight by content type
Web Almanac 2020: Page Weight
desktop [l mobile

1250
916

1000
)
<
= 750
o
£
S 500 41
@©
Q
: I
o 250
= 62

25
0 |
Images Js Css HTML
Content type

Figure 2.1. Median page weight per content type.

But nothing is free, and that’s especially true for JavaScript—all that code has a cost. Let’s digin
and take a closer look at how much script we use, how we use it, and what the fallout is.

How much JavaScript do we use?

We mentioned that the script tagis the 6th most used HTML element. Let’s dig in a bit
deeper to see just how much JavaScript that actually amounts to.

The median site (the 50th percentile) sends 444 KB of JavaScript when loaded on a desktop
device, and slightly fewer (411 KB) to a mobile device.

82 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution-content-type.png
https://almanac.httparchive.org/static/images/2020/page-weight/bytes-distribution-content-type.png

Part | Chapter 2 : JavaScript

Distribution of JavaScript bytes per page (2020)
Web Almanac 2020: JavaScript
desktop [l mobile

1,500
1,251
o
<
S
[0}
a 1,000 769
[
[sH
3
g 411
= 500
Q.
B 184
@ 77
>
: []
0 |
10 25 50 75 90
Percentile

Figure 2.2. Distribution of the amount of JavaScript kilobytes loaded per page.

It’s a bit disappointing that there isn’t a bigger gap here. While it’s dangerous to make too many
assumptions about network or processing power based on whether the device in use is a phone
or a desktop (or somewhere in between), it's worth noting that HTTP Archive mobile tests are
done by emulating a Moto G4 and a 3G network. In other words, if there was any work being
done to adapt to less-than-ideal circumstances by passing down less code, these tests should be
showing it.

The trend also seems to be in favor of using more JavaScript, not less. Comparing to last year’s
results™, at the median we see a 13.4% increase in JavaScript as tested on a desktop device, and
a 14.4% increase in the amount of JavaScript sent to a mobile device.

Client 2019 2020 Change
Desktop 391 444 13.4%

Mobile 359 411 14.4%
Figure 2.3. Year-over-year change in the median number of JavaScript kilobytes per page.
At least some of this weight seems to be unnecessary. If we look at a breakdown of how much of

that JavaScript is unused on any given page load, we see that the median page is shipping 152
KB of unused JavaScript. That number jumps to 334 KB at the 75th percentile and 567 KB at

122. ht I h hive.org/en/2019/javascrip h-javascript-d

2020 Web Almanac by HTTP Archive 83

https://almanac.httparchive.org/static/images/2020/javascript/bytes-2020.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-2020.png
https://almanac.httparchive.org/en/2019/javascript#how-much-javascript-do-we-use
https://almanac.httparchive.org/en/2019/javascript#how-much-javascript-do-we-use

Part | Chapter 2: JavaScript

the 90th percentile.

Distribution of unused JavaScript bytes
Web Almanac 2020: JavaScript

568
600
o
<
« 400
2
>
e}
(7]
]
el
Q
w
2 200
3
IS
kel 57
0
0
10 25 50 75 90

Percentile

Figure 2.4. Distribution of the amount of wasted JavaScript bytes per mobile page.

As raw numbers, those may or may not jump out at you depending on how much of a
performance nut you are, but when you look at it as a percentage of the total JavaScript used
on each page, it becomes a bit easier to see just how much waste we're sending.

37.22%

Figure 2.5. Percent of the median mobile page’s JavaScript bytes that are unused.

That 153 KB equates to ~37% of the total script size that we send down to mobile devices.
There's definitely some room for improvement here.

module and nomodule

One mechanism we have to potentially reduce the amount of code we send down is to take
advantage of the module / nomodule pattern. With this pattern, we create two sets of
bundles: one bundle intended for modern browsers and one intended for legacy browsers. The
bundle intended for modern browsers gets a type=module and the bundle intended for
legacy browsers getsa type=nomodule .

84 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/unused-js-bytes-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/unused-js-bytes-distribution.png
https://web.dev/serve-modern-code-to-modern-browsers/
https://web.dev/serve-modern-code-to-modern-browsers/
https://web.dev/serve-modern-code-to-modern-browsers/

Part | Chapter 2 : JavaScript

This approach lets us create smaller bundles with modern syntax optimized for the browsers
that support it, while providing conditionally loaded polyfills and different syntax to the
browsers that don't.

Support for module and nomodule is broadening, but still relatively new. As aresult,
adoption is still a bit low. Only 3.6% of mobile pages use at least one script with type=module
and only 0.7% of mobile pages use at least one script with type=nomodule to support legacy
browsers.

Request count

Another way of looking at how much JavaScript we use is to explore how many JavaScript
requests are made on each page. While reducing the number of requests was paramount to
maintaining good performance with HTTP/1.1, with HTTP/2 the opposite is the case: breaking
JavaScript down into smaller, individual files™ is typically better for performance™.

Distribution of JavaScript requests per page (2020)
Web Almanac 2020: JavaScript
desktop [l mobile

60 55

(]

j=2]

8

8 40 34

[2]

)]

g

g 19

a 20

5 10

@ 4

©

)

0 || .
10 25 50 75 90

Percentile

Figure 2.6. Distribution of JavaScript requests per page.

At the median, pages make 20 JavaScript requests. That’s only a minor increase over last year,
when the median page made 19 JavaScript requests.

123. https://web.dev/granular-chunking-nextjs/
124. https://almanac.httparchive.org/en/2019/http#impact-of-http2

2020 Web Almanac by HTTP Archive 85

https://web.dev/granular-chunking-nextjs/
https://almanac.httparchive.org/en/2019/http#impact-of-http2
https://almanac.httparchive.org/static/images/2020/javascript/requests-2020.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-2020.png

Part | Chapter 2: JavaScript

Distribution of JavaScript requests per page (2019)
Web Almanac 2020: JavaScript

desktop [} mobile

60 52
(0]
o
©
Q
g 40 32
[Z]
k7]
Q
2
g 18
] 20
g 9
s 4
©
E:
0 [| .
10 25 50 75 90

Percentile

Figure 2.7. Distribution of JavaScript requests per page in 2019.

Where does it come from?

One trend that likely contributes to the increase in JavaScript used on our pages is the
seemingly ever-increasing amount of third-party scripts that get added to pages to help with
everything from client-side A/B testing and analytics, to serving ads and handling
personalization.

Let’s drill into that a bit to see just how much third-party script we're serving up.

Right up until the median, sites serve roughly the same number of first-party scripts as they do
third-party scripts. At the median, 9 scripts per page are first-party, compared to 10 per page
from third-parties. From there, the gap widens a bit: the more scripts a site serves in the total,
the more likely it is that the majority of those scripts are from third-party sources.

86 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/requests-2019.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-2019.png

Part | Chapter 2 : JavaScript

Distribution of JS requests by host (Desktop)
Web Almanac 2020: JavaScript
First Party [l Third Party

40 36

[

o

g 30

3 21

Jd

[73

g 20

g

= 10

2 10

@ 4

: : I

&

) - |
10 25 50 75 90

Percentile

Figure 2.8. Distribution of the number of JavaScript requests by host for desktop.

Distribution of JS requests by host (Mobile)
Web Almanac 2020: JavaScript
First Party [l Third Party

40 35
@
[=)]
g8 30
& 20
@
w
3 20
5
= 10
o
2 10
%)
: : : .
3
) = |
10 25 50 75 90
Percentile

Figure 2.9. Distribution of the number of JavaScript requests by host for mobile.

While the amount of JavaScript requests are similar at the median, the actual size of those
scripts is weighted (pun intended) a bit more heavily toward third-party sources. The median
site sends 267 KB of JavaScript from third-parties to desktop devices ,compared to 147 KB
from first-parties. The situation is very similar on mobile, where the median site ships 255 KB of
third-party scripts compared to 134 KB of first-party scripts.

2020 Web Almanac by HTTP Archive 87

https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/requests-by-3p-mobile.png

Part | Chapter 2: JavaScript

Distribution of JS bytes by host (Desktop)
Web Almanac 2020: JavaScript
First Party [l Third Party
1000

943
750
570
500
267
250 88
24
0 — i
50 75 90

10 25

JavaScript bytes per page (KB)

Percentile

Figure 2.10. Distribution of the number of JavaScript bytes by host for desktop.

Distribution of JS bytes by host (Mobile)
Web Almanac 2020: JavaScript
First Party [l Third Party
1000

888
750
536
500
255
250 87
21
0 —_— i
50 75 90

10 25

JavaScript bytes per page (KB)

Percentile

Figure 2.11. Distribution of the number of JavaScript bytes by host for mobile.

How do we load our JavaScript?

The way we load JavaScript has a significant impact on the overall experience.

88 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-desktop.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/bytes-by-3p-mobile.png

Part | Chapter 2 : JavaScript

By default, JavaScript is parser-blocking. In other words, when the browser discoversa script
element, it must pause parsing of the HTML until the script has been downloaded, parsed, and
executed. It’s a significant bottleneck and a common contributor to pages that are slow to
render.

We can start to offset some of the cost of loading JavaScript by loading scripts either
asynchronously (with the async attribute), which only halts the HTML parser during the parse
and execution phases and not during the download phase, or deferred (with the defer
attribute), which doesn’t halt the HTML parser at all. Both attributes are only available on
external scripts—inline scripts cannot have them applied.

On mobile, external scripts comprise 59.0% of all script elements found.
As an aside, when we talked about how much JavaScript is loaded on a page earlier, that total didn’t

account for the size of these inline scripts—because they're part of the HTML document, they're
counted against the markup size. This means we load even more script that the numbers show.

Number of external vs inline scripts per page
Web Almanac 2020: JavaScript (Mobile)

Inline

External

Figure 2.12. Distribution of the number of external and inline scripts per mobile page.

Of those external scripts, only 12.2% of them are loaded with the async attribute and 6.0% of
them are loaded with the defer attribute.

2020 Web Almanac by HTTP Archive 89

https://almanac.httparchive.org/static/images/2020/javascript/external-inline-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/external-inline-mobile.png

Part | Chapter 2: JavaScript

Number of async and defer scripts per page
Web Almanac 2020: JavaScript (Mobile)

Async

Defer

Neither

Figure 2.13. Distribution of the number of async and defer scripts per mobile page.

Considering that defer provides us with the best loading performance (by ensuring
downloading the script happens in parallel to other work, and execution waits until after the
page can be displayed), we would hope to see that percentage a bit higher. In fact, as it is that
6.0% is slightly inflated.

Back when supporting IE8 and IE9 was more common, it was relatively common to use both the
async and defer attributes. With both attributes in place, any browser supporting both will
use async .|E8 and IE9, which don’'t support async will fallbackto defer .

Nowadays, the pattern is unnecessary for the vast majority of sites and any script loaded with
the pattern in place will interrupt the HTML parser when it needs to be executed, instead of
deferring until the page has loaded. The pattern is still used surprisingly often, with 11.4% of
mobile pages serving at least one script with that pattern in place. In other words, at least some
of the 6% of scripts that use defer aren’t getting the full benefits of the defer attribute.

There is an encouraging story here, though.

Harry Roberts tweeted about the anti-pattern on Twitter”, which is what prompted us to check
to see how frequently this was occurring in the wild. Rick Viscomi checked to see who the top
culprits were™, and it turns out “stats.wp.com” was the source of the most common offenders.
@Kraft from Automattic replied, and the pattern will now be removed going forward™.

125. https://x.com/csswizardry/status/1331721659498319873
126. https://x.com/rick_viscomi/status/1331735748060524551
127. https://x.com/Kraft/status/1336772912414601224

90 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/async-defer-mobile.png
https://almanac.httparchive.org/static/images/2020/javascript/async-defer-mobile.png
https://x.com/csswizardry/status/1331721659498319873
https://x.com/rick_viscomi/status/1331735748060524551
https://x.com/rick_viscomi/status/1331735748060524551
https://x.com/Kraft/status/1336772912414601224

Part | Chapter 2 : JavaScript

One of the great things about the openness of the web is how one observation can lead to
meaningful change and that’s exactly what happened here.

Resource hints

Another tool we have at our disposal for offsetting some of the network costs of loading
JavaScript are resource hints, specifically, prefetch and preload.

The prefetch hintlets developers signify that a resource will be used on the next page

navigation, therefore the browser should try to download it when the browser is idle.

The preload hint signifies that a resource will be used on the current page and that the
browser should download it right away at a higher priority.

Overall, we see 16.7% of mobile pages using at least one of the two resource hints to load
JavaScript more proactively.

Of those, nearly all of the usage is coming from preload . While 16.6% of mobile pages use at
least one preload hintto load JavaScript, only 0.4% of mobile pages use at least one
prefetch hint.

There’s arisk, particularly with preload , of using too many hints and reducing their
effectiveness, so it's worth looking at the pages that do use these hints to see how many they’re
using.

2020 Web Almanac by HTTP Archive 91

Part | Chapter 2: JavaScript

Distribution of prefetch hints per page
Web Almanac 2020: JavaScript
desktop [l mobile

15
12

Q

[=)]

g 10

o}

Q

@

=

=

S s 3 4

(5]

'z 2

) 1 . I

. = W
10 25 50 75 90

Percentile

Figure 2.14. Distribution of the number prefetch hints per page with any prefetch hints.

Distribution of preload hints per page
Web Almanac 2020: JavaScript
desktop [l mobile

15
[
(=]
g 10
g 7
]
£
=
E: 5
o
<
o 1 1 1 1

0 [[[[
10 25 50 75 90
Percentile

Figure 2.15. Distribution of the number preload hints per page with any preload hints.

At the median, pages thatusea prefetch hint to load JavaScript use three, while pages that
usea preload hintonly use one. The long tail gets a bit more interesting, with 12 prefetch
hints used at the 90th percentileand 7 preload hints used on the 90th as well. For more
detail on resource hints, check out this year’s Resource Hints chapter.

92 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/prefetch-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/prefetch-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/preload-distribution.png
https://almanac.httparchive.org/static/images/2020/javascript/preload-distribution.png

Part | Chapter 2 : JavaScript

How do we serve JavaScript?

As with any text-based resource on the web, we can save a significant number of bytes through
minimization and compression. Neither of these are new optimizations—they’ve been around
for quite awhile—so we should expect to see them applied in more cases than not.

One of the audits in Lighthouse checks for unminified JavaScript, and provides a score (0.00
being the worst, 1.00 being the best) based on the findings.

Distribution of unminified JavaScript audit scores
Web Almanac 2020: JavaScript

77%
80%

60%

40%

Percent of pages

20% 10% 8%
4%
0% 0%

0%
0.00-0.10 0.10-0.25 0.25-050 050-0.75 0.75-0.90 0.90-1.00

Range of Lighthouse "unminified JavaScript" audit scores

Figure 2.16. Distribution of unminified JavaScript Lighthouse audit scores per mobile page.

The chart above shows that most pages tested (77%) get a score of 0.90 or above, meaning that
few unminified scripts are found.

Overall, only 4.5% of the JavaScript requests recorded are unminified.

Interestingly, while we've picked on third-party requests a bit, this is one area where third-
party scripts are doing better than first-party scripts. 82% of the average mobile page’s
unminified JavaScript bytes come from first-party code.

2020 Web Almanac by HTTP Archive 93

https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js.png
https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js.png

Part | Chapter 2: JavaScript

Average distribution of unminified JS bytes
Web Almanac 2020: JavaScript

Third Party

First Party

Figure 2.17. Average distribution of unminified JavaScript bytes by host.

Compression

Minification is a great way to help reduce file size, but compression is even more effective and,
therefore, more important—it provides the bulk of network savings more often than not.

94 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js-by-3p.png
https://almanac.httparchive.org/static/images/2020/javascript/lighthouse-unminified-js-by-3p.png

Part | Chapter 2 : JavaScript

Compression methods by request
Web Almanac 2020: JavaScript

desktop [l mobile

80%
65%
@ 60%
7]
@
3
o
o
%) 40%
G
£ 20%
8 15%
5 20%
o
0% 0% 0% 0%
0%
gzip br not set deflate UTF-8 identity none

Compression method

Figure 2.18. Distribution of the percent of JavaScript requests by compression method.

85% of all JavaScript requests have some level of network compression applied. Gzip makes up
the majority of that, with 65% of scripts having Gzip compression applied compared to 20% for
Brotli (br). While the percentage of Brotli (which is more effective than Gzip) is low compared
to its browser support, it's trending in the right direction, increasing by 5 percentage points in
the last year.

Once again, this appears to be an area where third-party scripts are actually doing better than
first-party scripts. If we break the compression methods out by first- and third-party, we see
that 24% of third-party scripts have Brotli applied, compared to only 15% of first-party scripts.

2020 Web Almanac by HTTP Archive 95

https://almanac.httparchive.org/static/images/2020/javascript/compression-method-request.png
https://almanac.httparchive.org/static/images/2020/javascript/compression-method-request.png

Part | Chapter 2: JavaScript

Compression methods by request and host
Web Almanac 2020: JavaScript
first party [l third party
80%

64%

a
[7]
E| 60%
o
e
()
@
% 40%
S 24%
bS]
= 20% 12%
@D
e
(5]
: ||

00/0

gzip br not set

Compression method

Figure 2.19. Distribution of the percent of mobile JavaScript requests by compression method and
host.

Third-party scripts are also least likely to be served without any compression at all: 12% of
third-party scripts have neither Gzip nor Brotli applied, compared to 19% of first-party scripts.

It's worth taking a closer look at those scripts that don’t have compression applied.
Compression becomes more efficient in terms of savings the more content it has to work with.
In other words, if the file is tiny, sometimes the cost of compressing the file doesn’t outweight
the miniscule reduction in file size.

90.25%

Figure 2.20. Percent of uncompressed third-party JavaScript requests under 5 KB.

Thankfully, that’s exactly what we see, particularly in third-party scripts where 90% of
uncompressed scripts are less than 5 KB in size. On the other hand, 49% of uncompressed first-
party scripts are less than 5 KB and 37% of uncompressed first-party scripts are over 10 KB. So
while we do see a lot of small uncompressed first-party scripts, there are still quite a few that
would benefit from some compression.

96 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/compression-method-3p.png
https://almanac.httparchive.org/static/images/2020/javascript/compression-method-3p.png

Part | Chapter 2 : JavaScript

What do we use?

As we've increasingly used more JavaScript to power our sites and applications, there has also
been an increasing demand for open-source libraries and frameworks to help with improving
developer productivity and overall code maintainability. Sites that don’t wield one of these tools
are definitely the minority on today’s web—jQuery alone is found on nearly 85% of the mobile
pages tracked by HTTP Archive.

It's important that we think critically about the tools we use to build the web and what the
trade-offs are, so it makes sense to look closely at what we see in use today.

Libraries

HTTP Archive uses Wappalyzer to detect technologies in use on a given page. Wappalazyer
tracks both JavaScript libraries (think of these as a collection of snippets or helper functions to
ease development, like jQuery) and JavaScript frameworks (these are more likely scaffolding
and provide templating and structure, like React).

The popular libraries in use are largely unchanged from last year, with jQuery continuing to
dominate usage and only one of the top 21 libraries falling out (lazy.js, replaced by DataTables).
In fact, even the percentages of the top libraries has barely changed from last year.

Adoption of the top JS frameworks and libraries
Web Almanac 2020: JavaScript
desktop [l mobile
100% 83%

75%
50%

25%

Percent of pages

0%

JS frameworks and libraries

Figure 2.21. Adoption of the top JavaScript frameworks and libraries as a percent of pages.

2020 Web Almanac by HTTP Archive 97

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-libraries.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-libraries.png

Part | Chapter 2: JavaScript

Last year, Houssein posited a few reasons for why jQuery’s dominance continues™:

WordPress, which is used in more than 30% of sites, includes jQuery by default.
Switching from jQuery to a newer client-side library can take time depending
on how large an application is, and many sites may consist of jQuery in
addition to newer client-side libraries.

Both are very sound guesses, and it seems the situation hasn’t changed much on either front.

In fact, the dominance of jQuery is supported even further when you stop to consider that, of
the top 10 libraries, 6 of them are either jQuery or require jQuery in order to be used: jQuery
Ul, jQuery Migrate, FancyBox, Lightbox and Slick.

Frameworks

When we look at the frameworks, we also don’t see much of a dramatic change in terms of
adoption in the main frameworks that were highlighted last year. Vue.js has seen a significant

increase, and AMP grew a bit, but most of them are more or less where they were a year ago.

It's worth noting that the detection issue that was noted last year still applies™, and still impacts
the results here. It’s possible that there has been a significant change in popularity for a few
more of these tools, but we just don’t see it with the way the data is currently collected.

What it all means

More interesting to us than the popularity of the tools themselves is the impact they have on
the things we build.

First, it's worth noting that while we may think of the usage of one tool versus another, in
reality, we rarely only use a single library or framework in production. Only 21% of pages
analyzed report only one library or framework. Two or three frameworks are pretty common,
and the long-tail gets very long, very quickly.

When we look at the common combinations that we see in production, most of them are to be
expected. Knowing jQuery’s dominance, it's unsurprising that most of the popular
combinations include jQuery and any number of jQuery-related plugins.

128. https://almanac.httparchive.org/en/2019/javascript#ope librarie d-f
i i lyzer/i 50

98 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/javascript#open-source-libraries-and-frameworks
https://github.com/AliasIO/wappalyzer/issues/2450

Part | Chapter 2 : JavaScript

Combinations Pages (%)
jQuery 1,312,601 20.7%
jQuery, jQuery Migrate 658,628 10.4%
jQuery, jQuery Ul 289,074 4.6%
Modernizr, jQuery 155,082 2.4%
jQuery, jQuery Migrate, jQuery Ul 140,466 2.2%
Modernizr, jQuery, jQuery Migrate 85,296 1.3%
FancyBox, jQuery 84,392 1.3%
Slick, jQuery 72,591 1.1%
GSAP, Lodash, React, RequirelS, Zepto 61,935 1.0%
Modernizr, jQuery, jQuery Ul 61,152 1.0%
Lightbox, jQuery 60,395 1.0%
Modernizr, jQuery, jQuery Migrate, jQuery Ul 53,924 0.8%
Slick, jQuery, jQuery Migrate 51,686 0.8%
Lightbox, jQuery, jQuery Migrate 50,557 0.8%
FancyBox, jQuery, jQuery Ul 44,193 0.7%
Modernizr, YUI 42,489 0.7%
React, jQuery 37,753 0.6%
Moment.js, jQuery 32,793 0.5%
FancyBox, jQuery, jQuery Migrate 31,259 0.5%
MooTools, jQuery, jQuery Migrate 28,795 0.5%

Figure 2.22. The most popular combinations of libraries and frameworks on mobile pages.

We do also see a fair amount of more “modern” frameworks like React, Vue, and Angular paired
with jQuery, for example as a result of migration or inclusion by third-parties.

2020 Web Almanac by HTTP Archive 99

Part | Chapter 2: JavaScript

Combination Without jQuery With jQuery
GSAP, Lodash, React, RequirelS, Zepto 1.0%
React, jQuery 0.6%
React 0.4%
React, jQuery, jQuery Migrate 0.4%
Vue.js, jQuery 0.3%
Vue.js 0.2%
AngularJS, jQuery 0.2%
GSAP, Hammer.js, Lodash, React, RequireJS, Zepto 0.2%
Grand Total 1.7% 1.4%

Figure 2.23. The most popular combinations of React, Angular, and Vue with and without jQuery.

More importantly, all these tools typically mean more code and more processing time.

Looking specifically at the frameworks in use, we see that the median JavaScript bytes for pages
using them varies dramatically depending on what is being used.

The graph below shows the median bytes for pages where any of the top 35 most commonly
detected frameworks were found, broken down by client.

100 2020 Web Almanac by HTTP Archive

Part | Chapter 2 : JavaScript

Median bytes by JS framework
Web Almanac 2020: JavaScript

Desktop [l Mobile

React
GSAP
RequireJS
Handlebars

Vue.js

MooTools
Backbone.js
AngularJS
Mustache
Prototype
AMP
Zone.js
Angular
Knockout.js
Socket.io
RxJS
Marionette.js
Ember.js
Nuxt.js
Element Ul
Hogan.js
Gatsby
AlloyUl
Wink

ExtJS
RightJS
Ant Design
Meteor

Riot
Polymer
BEM
Alpine js
Svelte
Aurelia
Reveal.js

JS Framework

o
(42
o
o

1,000 1,500 2,000

Median bytes (KB)

Figure 2.24. The median number of JavaScript kilobytes per page by JavaScript framework.

On one of the spectrum are frameworks like React or Angular or Ember, which tend to ship a lot
of code regardless of the client. On the other end, we see minimalist frameworks like Alpine.js
and Svelte showing very promising results. Defaults are very important, and it seems that by

2020 Web Almanac by HTTP Archive 101

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-bytes.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-bytes.png

Part | Chapter 2: JavaScript

starting with highly performant defaults, Svelte and Alpine are both succeeding (so far... the
sample size is pretty small) in creating a lighter set of pages.

We get a very similar picture when looking at main thread time for pages where these tools

were detected.

Median main thread time by JS framework
Web Almanac 2020: JavaScript
Desktop [Mobile

25,000
% 20,000
£
o 15,000
E
T 10,000
et
£ 5000
£
©
£ 0
o [[[] D DN B > X Es5B 5 LR)
§ R E R s B LA e
k<] menjoc‘@gbq:cg,:mx“mxgwﬂog‘igw«MEmcghm
e rO5e3L 6538622582658 Woge FTE432
= 8" 839540 N<S8 £EZgo00< go= S &8%Zg3
e =853a g;n 2W oI € < d
xg @< S]] <
Q s

JS Framework

Figure 2.25. The median main thread time per page by JavaScript framework.

Ember’s mobile main thread time jumps out and kind of distorts the graph with how long it
takes. (I spent some more time looking into this and it appears to be heavily influenced by one
particular platform using this framework inefficiently™, rather than an underlying problem with

Ember itself.) Pulling it out makes the picture a bit easier to understand.

130. ps://til 2021-01-26-what-about-embx

102 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread.png
https://timkadlec.com/remembers/2021-01-26-what-about-ember/
https://timkadlec.com/remembers/2021-01-26-what-about-ember/

Part | Chapter 2 : JavaScript

Median main thread time by JS framework
Web Almanac 2020: JavaScript
Desktop [Mobile

8,000
@
2 6,000
£
o
£ 4,000
el
©
o
£ 2,000
£
®
£ 0
c BLNDPOLODNBVOAL N EBONANIT AT XNNESE §g=-28 0.0
K m{"maj005250-2q,'ﬂ.."_:_iddjdna-giz-g’g'gmch':E—'
oy a8l o o > 35Xk @ S E [
g NEeoSPcsagS<cld el tagosS¥Eo"5me >5 8
2 “032>95388 R&$% £2288% WgAs § 5933
= S
g2 82232 N<%g 57§58 2% 2 %8
¥ o<§ﬂ. e = @ c
T = ¥ g o <

JS Framework

Figure 2.26. The median main thread time per page by JavaScript framework, excluding Ember.js.

Tools like React, GSAP, and RequireJS tend to spend a lot of time on the main thread of the
browser, regardless of whether it’s a desktop or mobile page view. The same tools that tend to
lead to less code overall—tools like Alpine and Svelte—also tend to lead to lower impact on the
main thread.

The gap between the experience a framework provides for desktop and mobile is also worth
digging into. Mobile traffic is becoming increasingly dominant, and it’s critical that our tools
perform as well as possible for mobile pageviews. The bigger the gap we see between desktop
and mobile performance for a framework, the bigger the red flag.

2020 Web Almanac by HTTP Archive 103

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember.png

Part | Chapter 2: JavaScript

Difference in median main thread time by JS
framework

Web Almanac 2020: JavaScript

absolute (ms) [relative (%)

6,000 300%
- 4,000 200% _
E 2
8 g
S 2,000 100% &
2 &
5 5
L 0 1 | % £
- a nwuunn QO w-wno N N= N = X ckR s N ooV ko
3 EESE Py Tl S Rl Rt B bl b iy Rl b £ e 2
2 QN PRV OR20S5gXVK=CR g;zm«nﬁE D[

cLSCcogE<coalpsScago oo >Mc>50 @
< rgsesisceosgLe - o8 C2 o >I="WLD = @3

25788355 N&g8 52E£89< g2 § 2¥<g

8§ 28534 gn 2 ofT £ <

T @ > c w <

@ =

JS Framework

Figure 2.27. Difference between desktop and mobile median main thread time per page by
JavaScript framework, excluding Ember.js.

As you would expect, there’s a gap for all tools in use due to the lower processing power of the
emulated Moto G4. Ember and Polymer seem to jump out as particularly egregious examples,
while tools like RxJS and Mustache vary only minorly from desktop to mobile.

What'’s the impact?

We have a pretty good picture now of how much JavaScript we use, where it comes from, and
what we use it for. While that’s interesting enough on its own, the real kicker is the “so what?”

What impact does all this script actually have on the experience of our pages?

The first thing we should consider is what happens with all that JavaScript once its been
downloaded. Downloading is only the first part of the JavaScript journey. The browser still has
to parse all that script, compile it, and eventually execute it. While browsers are constantly on
the lookout for ways to offload some of that cost to other threads, much of that work still
happens on the main thread, blocking the browser from being able to do layout or paint-related
work, as well as from being able to respond to user interaction.

If you recall, there was only a 30 KB difference between what is shipped to a mobile device
versus a desktop device. Depending on your point of view, you could be forgiven for not getting
too upset about the small gap in the amount of code sent to a desktop browser versus a mobile
one—after all, what's an extra 30 KB or so at the median, right?

104 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember-diff.png
https://almanac.httparchive.org/static/images/2020/javascript/frameworks-main-thread-no-ember-diff.png
http://127.0.0.1:8080/en/2020/methodology#webpagetest

Part | Chapter 2 : JavaScript

The biggest problem comes when all of that code gets served to a low-to-middle-end device,
something a bit less like the kind of devices most developers are likely to have, and a bit more
like the kind of devices you'll see from the majority of people across the world. That relatively
small gap between desktop and mobile is much more dramatic when we look at it in terms of
processing time.

The median desktop site spends 891 ms on the main thread of a browser working with all that
JavaScript. The median mobile site, however, spends 1,897 ms—over two times the time spent
on the desktop. It's even worse for the long tail of sites. At the 90th percentile, mobile sites
spend a staggering 8,921 ms of main thread time dealing with JavaScript, compared to 3,838
ms for desktop sites.

Distribution of main thread time
Web Almanac 2020: JavaScript
desktop [l mobile

10,000 8,921
& 7,500
E
£ 4,461
s 5000 :
o
- 1,897 ;
5 250 714
264 .
. — -
10 25 50 75 90
Percentile

Figure 2.28. Distribution of main thread time.

Correlating JavaScript use to Lighthouse scoring

One way of looking at how this translates into impacting the user experience is to try to
correlate some of the JavaScript metrics we've identified earlier with Lighthouse scores for
different metrics and categories.

2020 Web Almanac by HTTP Archive 105

https://almanac.httparchive.org/static/images/2020/javascript/main-thread-time.png
https://almanac.httparchive.org/static/images/2020/javascript/main-thread-time.png

Part | Chapter 2: JavaScript

Correlations of JS on UX
Web Almanac 2020: JavaScript

Bytes : LH Perf -0.47
Bytes : LH A11y
Bytes : TBT 0.55
3P bytes : LH Perf -0.37
3P bytes : LH A11y
3P bytes : TBT 0.48
Async scripts : LH Perf

Async scripts : LH A11y

Async scripts : TBT 0.36
-1.00 -0.50 0.00 0.50 1.00

Pearson coefficient of correlation

Figure 2.29. Correlations of JavaScript on various aspects of user experience.

131

The above chart uses the Pearson coefficient of correlation™. There’s a long, kinda complex
definition of what that means precisely, but the gist is that we're looking for the strength of the
correlation between two different numbers. If we find a coefficient of 1.00, we'd have a direct
positive correlation. A correlation of 0.00 would show no connection between two numbers.
Anything below 0.00 indicates a negative correlation—in other words, as one number goes up

the other one decreases.

First, there doesn’t seem to be much of a measurable correlation between our JavaScript
metrics and the Lighthouse accessibility (‘LH A11y” in the chart) score here. That stands in
stark opposition to what’s been found elsewhere, notably through WebAim’s annual research™.

The most likely explanation for this is that Lighthouse’s accessibility tests aren’t as
comprehensive (yet!) as what is available through other tools, like WebAIM, that have

accessibility as their primary focus.

Where we do see a strong correlation is between the amount of JavaScript bytes (“Bytes”) and
both the overall Lighthouse performance (“LH Perf”) score and Total Blocking Time (“TBT").

The correlation between JavaScript bytes and Lighthouse performance scores is -0.47. In other
words, as JS bytes increase, Lighthouse performance scores decrease. The overall bytes has a
stronger correlation than the amount of third-party bytes (“3P bytes”), hinting that while they

131. https://en.wikipedia.org/wiki/P C ion_coefficient

132. ps: i ‘projects/million/#f k

106 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/javascript/correlations.png
https://almanac.httparchive.org/static/images/2020/javascript/correlations.png
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://webaim.org/projects/million/#frameworks

Part | Chapter 2 : JavaScript

certainly play arole, we can’t place all the blame on third-parties.

The connection between Total Blocking Time and JavaScript bytes is even more significant
(0.55 for overall bytes, 0.48 for third-party bytes). That’s not too surprising given what we know
about all the work browsers have to do to get JavaScript to run in a page—more bytes means
more time.

Security vulnerabilities

One other helpful audit that Lighthouse runs is to check for known security vulnerabilities in
third-party libraries. It does this by detecting which libraries and frameworks are used on a
given page, and what version is used of each. Then it checks Snyk’s open-source vulnerability

133

to see what vulnerabilities have been discovered in the identified tools.

83.50%

Figure 2.30. Percent of mobile pages contain at least one vulnerable JavaScript library.

database

According to the audit, 83.5% of mobile pages use a JavaScript library or framework with at
least one known security vulnerability.

This is what we call the jQuery effect. Remember how we saw that jQuery is used on a
whopping 83% of pages? Several older versions of jQuery contain known vulnerabilities, which
comprises the vast majority of the vulnerabilities this audit checks.

Of the roughly 5 million or so mobile pages that are tested against, 81% of them contain a
vulnerable version of jQuery—a sizeable lead over the second most commonly found vulnerable
library—jQuery Ul at 15.6%.

133. https://snyk.io/vuln?type=npm

2020 Web Almanac by HTTP Archive 107

https://snyk.io/vuln?type=npm
https://snyk.io/vuln?type=npm

Part | Chapter 2: JavaScript

Library

jQuery
jQuery Ul
Bootstrap
Lodash
Moment.js
Handlebars
AngularJS
Mustache
Dojo

jQuery Mobile

Vulnerable pages

80.86%
15.61%
13.19%
4.90%
2.61%
1.38%
1.26%
0.77%
0.58%

0.53%

Figure 2.31. Top 10 libraries contributing to the highest numbers of vulnerable mobile pages
according to Lighthouse.

In other words, if we can get folks to migrate away from those outdated, vulnerable versions of

jQuery, we would see the number of sites with known vulnerabilities plummet (at least, until we

start finding some in the newer frameworks).

The bulk of the vulnerabilities found fall into the “medium” severity category.

108

2020 Web Almanac by HTTP Archive

Part | Chapter 2 : JavaScript

JavaScript vulnerabilities by severity
Web Almanac 2020: JavaScript

High (none)

Low

Medium

Figure 2.32. Distribution of the percent of mobile pages having JavaScript vulnerabilities by severity.

Conclusion

JavaScript is steadily rising in popularity, and there’s a lot that’s positive about that. It’s
incredible to consider what we're able to accomplish on today’s web thanks to JavaScript that,

even a few years ago, would have been unimaginable.

But it’s clear we've also got to tread carefully. The amount of JavaScript consistently rises each
year (if the stock market were that predictable, we'd all be incredibly wealthy), and that comes
with trade-offs. More JavaScript is connected to an increase in processing time which
negatively impacts key metrics like Total Blocking Time. And, if we let those libraries languish
without keeping them updated, they carry the risk of exposing users through known security

vulnerabilities.

Carefully weighing the cost of the scripts we add to our pages and being willing to place a
critical eye on our tools and ask more of them are our best bets for ensuring that we build a web
that is accessible, performant, and safe.

2020 Web Almanac by HTTP Archive 109

https://almanac.httparchive.org/static/images/2020/javascript/vulnerabilities-by-severity.png
https://almanac.httparchive.org/static/images/2020/javascript/vulnerabilities-by-severity.png

Part | Chapter 2: JavaScript

Author

Tim Kadlec

X @tkadlec) tkadlec @ https://timkadlec.com/

Tim is a web performance consultant and trainer focused on building a web
everyone can use. He is the author of High Performance Images (O’Reilly, 2016)
and Implementing Responsive Design (New Riders, 2012). He writes about all

104

things web at timkadlec.com™. You can find him sharing his thoughts in a briefer

format on Twitter at @tkadlec.

134. https://timkadlec.com/

110 2020 Web Almanac by HTTP Archive

https://x.com/tkadlec
https://github.com/tkadlec
https://timkadlec.com/
https://timkadlec.com/
https://x.com/tkadlec

Part | Chapter 3 : Markup

Partl Chapter3

Markup

o ®
3

Written by Jens Oliver Meiert, Catalin Rosu, and lan Devlin
Reviewed by Simon Pieters, Manuel Matuzovic, and Brian Kardell
Analyzed by Tony McCreath

Edited by Rick Viscomi

Introduction

The web is built on HTML. Without HTML there are no web pages, no web sites, no web apps.
Nothing. There may be plain-text documents, perhaps, or XML trees, in some parallel universe
that enjoyed that particular kind of challenge. In this universe, HTML is the foundation of the
user-facing web. There are many standards that the web is resting on, but HTML is certainly

one of the most important ones.

How do we use HTML, then, how great of a foundation do we have? In the introductory section
of the 2019 Markup chapter, author Brian Kardell* suggested that for a long time, we haven't
really known. There were some smaller samples. For example, there was lan Hickson’s
research™ (one of modern HTML's parents) among a few others, but until last year we lacked
major insight into how we as developers, as authors, make use of HTML. In 2019 we had both

135. https://almanac.httparchive.org/en/2019/markup#introduction
136. https://almanac.httparchive.org/en/2019/contributors#bkardell
137. https://web.archive.org/web/200602030354 14/http://code.google. i html

2020 Web Almanac by HTTP Archive m

https://almanac.httparchive.org/en/2019/markup#introduction
https://almanac.httparchive.org/en/2019/contributors#bkardell
https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html

Part | Chapter 3 : Markup

Catalin Rosu’s work™ (one of this chapter’s co-authors) as well as the 2019 edition of the Web
Almanac to give us a better view again of HTML in practice.

Last year’s analysis was based on 5.8 million pages, of which 4.4 million were tested on desktop
and 5.3 million on mobile. This year we analyzed 7.5 million pages, of which 5.6 million were
tested on desktop and 6.3 million on mobile, using the latest data on the websites users are
visiting in 2020. We do make some comparisons to last year, but just as we've tried to analyze
additional metrics for new insights, we've also tried to impart our own personalities and

perspectives throughout the chapter.

In this Markup chapter, we're focusing almost exclusively on HTML, rather than SVG or MathML,
which are also considered markup languages. Unless otherwise noted, stats presented in this chapter
refer to the set of mobile pages. Additionally, the data for all Web Almanac chapters is open and
available. Take a look at the results™ and share your observations™ with the community!

General

In this section, we're covering the higher-level aspects of HTML like document types, the size of
documents, as well as the use of comments and scripts. “Living HTML” is very much alive!

Doctypes

96.82%

Figure 3.1. Percent of pages with a doctype.

96.82% of pages declare a doctype. HTML documents declaring a doctype is useful for historical
reasons, “to avoid triggering quirks mode in browsers” as lan Hickson explained in 2009, What

are the most popular values?

138. https://www.advancedwebranking.com/html/

139. F docs.google.c preadsh d/1Ta7amoUeal 4pILhWzH-SCzMX9PsZeb1x_mwrX2C4eY8/
140. https://discuss.httparchive.org/t/2039

141. https://lists.w3.org/Archives/Public/public-html-comments/2009Jul/0020.html

n2 2020 Web Almanac by HTTP Archive

https://www.advancedwebranking.com/html/
https://docs.google.com/spreadsheets/d/1Ta7amoUeaL4pILhWzH-SCzMX9PsZeb1x_mwrX2C4eY8/
https://discuss.httparchive.org/t/2039
https://developer.mozilla.org/docs/Glossary/Doctype
https://lists.w3.org/Archives/Public/public-html-comments/2009Jul/0020.html

Part | Chapter 3 : Markup

Doctype Pages Pages (%)
HTML (“HTML5”) 5,441,815 85.73%
XHTML 1.0 Transitional 382,322 6.02%
XHTML 1.0 Strict 107,351 1.69%
HTML 4.01 Transitional 54,379 0.86%
HTML 4.01 Transitional (quirky*®) 38,504 0.61%

Figure 3.2. The 5 most popular doctypes.

You can already tell how the numbers decrease quite a bit after XHTML 1.0, before entering the

long tail with a few standard, some esoteric, and also bogus doctypes.
Two things stand out from these results:

1. Almost 10 years after the announcement of living HTML™ (aka “HTMLS5"), living
HTML has clearly become the norm.

2. The web before living HTML can still be seen in the next most popular doctypes, like
XHTML 1.0. XHTML. Although their documents are likely delivered as HTML with a
MIME type of text/html,these older doctypes are not dead yet.

Document size

A page’s document size refers to the amount of HTML bytes transferred over the network,
including compression if enabled. At the extremes of the set of 6.3 million documents:

e 1,110 documents are empty (O bytes).
e The average document size is 49.17 KB (in most cases compressed™).

o Thelargest document by far weighs 61.19 MB, almost deserving its own analysis
and chapter in the Web Almanac.

How is this situation in general, then? The median document weighs 24.65 KB, which comes
without surprises™:

142. https://hsivonen.fi/doctype/#xml

143. https://blog.whatwg.org/html-is-the-new-html5
144. https://w3techs.com/tec i ils/ce-gzipc
145. https://httparchive.org/reports/page-weight

2020 Web Almanac by HTTP Archive n3

https://hsivonen.fi/doctype/#xml
https://blog.whatwg.org/html-is-the-new-html5
https://w3techs.com/technologies/details/ce-gzipcompression
https://httparchive.org/reports/page-weight

Part | Chapter 3 : Markup

Document size
Web Almanac 2020: Markup
desktop [l mobile

125,000 115,507
100,000
3 75,000
s, 55,646
i)
-}
E 50,000
= 25,237
25,000
5,071 11,649 .
5 = |
10 25 50 75 20
Percentile

Figure 3.3. The amount of HTML bytes transferred over the network, including compression if
enabled.

Document language

We identified 2,863 different values for the lang attribute onthe html start tag (compare
that to the 7,117 spoken languages™ as per Ethnologue). Almost all of them seem valid,
according to the Accessibility chapter.

22.36% of all documents specify no lang attribute. The commonly accepted view is that they
should™, but ignoring the fact that software could eventually detect language automatically™,
document language can also be specified on the protocol level™, which is something we didn’t

check.

Here are the 10 most popular (normalized) languages in our sample. It's important to note that

the HTTP Archive crawls from US data centers with English language settings, so looking at the
language pages are written in, will be skewed towards English. Nevertheless we present the
lang attributes seen to give some context to the sites analyzed.

146. https://www.ethnol c i
147. ps:) org/TR/i18n-html-tech-lang,
148. https://meiert.com/en/blog/lang/
149. https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language

n4 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/markup/document-size.png
https://almanac.httparchive.org/static/images/2020/markup/document-size.png
https://www.ethnologue.com/guides/how-many-languages
https://www.w3.org/TR/i18n-html-tech-lang/#overall
https://www.w3.org/TR/i18n-html-tech-lang/#overall
https://meiert.com/en/blog/lang/
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Language

Part | Chapter 3 : Markup

Document language
Web Almanac 2020: Markup

desktop [l mobile
2500% 22.36%

20.00% 18.08%

%] 0,

% 15.00% 13.27%

Q

S

§ 10.00% 5.47%

& TTa09%, 0 o

5.00% I 2.84%2.53%2.19% 1.92% 1.43%
(notset) en en-us ja es pt-br ru en-gb de fr
HTML lang attribute
Figure 3.4. The top HTML lang attributes.
Comments

Adding comments to code is generally a good practice and HTML comments are there to add
notes to HTML documents, without having them rendered by user agents.

<!-- This is a comment in HTML -->

Although many pages will have been stripped of comments for production, we found that home
pages in the 90th percentile are using about 73 comments on mobile, respectively 79
comments on desktop, while in the 10th percentile the number of the comments is about 2. The
median page uses 16 (mobile) or 17 comments (desktop).

Around 89% of pages contain at least one HTML comment, while about 46% of them contain a
conditional comment.

Conditional comments

<!--[if IE 8]>

2020 Web Almanac by HTTP Archive n5

https://almanac.httparchive.org/static/images/2020/markup/document-language.png
https://almanac.httparchive.org/static/images/2020/markup/document-language.png

Part | Chapter 3 : Markup

<p>This renders in Internet Explorer 8 only.</p>

<![endif]-->

The above is a non-standard HTML conditional comment. While those have proven to be
helpful in the past in order to tackle browser differences, they have been consigned to history

for some time as Microsoft dropped conditional comments™) in Internet Explorer 10.

Still, on the above percentile extremes, we found that web pages are using about 6 conditional
comments in the 90th percentile, and 1 conditional comment while in the 10th percentile. Most
of the pages include them for helpers such as html5shiv”, selectivizr™, and respond.js*”. While
being decentish and still active pages, our conclusion is that many of them were using obsolete
CMS themes.

For production, HTML comments are usually stripped by build tools. Considering all the above
counts and percentages, and referring to the use of comments in general, we suppose that lots
of pages are served without involving an HTML minifier.

Script use

As shown in the Top elements section below, the script elementisthe 6th most frequently
used HTML element. For the purposes of this chapter, we were interested in the ways the

script elementis used across these millions of pages from the data set.

Overall, around 2% of pages contain no scripting at all, not even structured data scripts with the
type="application/ld+json" attribute. Considering that nowadays it's pretty common

for a page to include at least one script for an analytics solution, this seems noteworthy.

At the opposite end of the spectrum, the numbers show that about 97% of pages contain at

least one script, either inline or external.

150. microsoft.c previc i i i ol ie-dle ibilit 01214(v=vs.85)
151. https://github.com/aFarkas/html5shiv

152. http://selectivizr.com/

153. https://github.com/scottjehl/Respond

16 2020 Web Almanac by HTTP Archive

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/hh801214(v=vs.85)
https://github.com/aFarkas/html5shiv
http://selectivizr.com/
https://github.com/scottjehl/Respond

Part | Chapter 3 : Markup

Script use
Web Almanac 2020: Markup
desktop [l mobile

100.00%
75.00%
%]
[}
()]
®
Q
% 50.00%
z
@
©
[
o 2500%
0.00%

only JSON-LD inline script src scripts no script

Type of <script> usage

Figure 3.5. Usage of the script element.

When scripting is unsupported or turned off in the browser, the noscript element helpsto
add an HTML section within a page. Considering the above script numbers, we were curious
about the noscript element aswell.

Following the analysis, we found that about 49% of pages are usinga noscript element. At
the same time, about 16% of noscript elementscontainan iframe witha src value
referring to “googletagmanager.com”.

This seems to confirm the theory that the total number of noscript elementsinthe wild may
be affected by common scripts like Google Tag Manager which enforce users to add a
noscript snippet after the body starttagon apage.

Script types

What type attribute values are used with script elements?

e text/javascript :60.03%
e application/ld+json:1.68%
e application/json:0.41%

e text/template:0.41%

2020 Web Almanac by HTTP Archive n7

https://almanac.httparchive.org/static/images/2020/markup/script-use.png
https://almanac.httparchive.org/static/images/2020/markup/script-use.png

Part | Chapter 3 : Markup

e text/html:0.27%

154

When it comes to loading JavaScript module scripts™ using type="module" ,we found that

0.13% of script elements currently specify this attribute-value combination. nomodule is
used by 0.95% of all tested pages. (Note that one metric relates to elements, the other to
pages.)

36.38% of all scripts have no type values set whatsoever.

Elements

In this section, the focus is on elements: what elements are used, how frequently, which
elements are likely to appear on a given page, and how the situation is with respect to custom,
obsolete, and proprietary elements. Is divitis still a thing? Yes.

Element diversity

Let’s have a look at how diverse use of HTML actually is: Do authors use many different
elements, or are we looking at a landscape that makes use of relatively few elements?

The median web page, it turns out, uses 30 different elements, 587 times:

154. https://j hibald.com/2017, dules-i

18 2020 Web Almanac by HTTP Archive

https://jakearchibald.com/2017/es-modules-in-browsers/
https://en.wiktionary.org/wiki/divitis

Part | Chapter 3 : Markup

Element diversity: element types
Web Almanac 2020: Markup
desktop [l mobile

50
41
40 35
30
30 25
S 20
0
2 20
2
) I I
0
10 25 50 75 90
Percentile
Figure 3.6. Distribution of the number of element types per page.
Element diversity
Web Almanac 2020: Markup
desktop [l mobile
2,000
1,665
1,500
g 1,002
S 1,000
s 587
5
w 327
500
168 I
_ mm "W
10 25 50 75 90

Percentile

Figure 3.7. Distribution of the total number elements per page by percentile.

Given that living HTML™ currently has 112 elements, the 90th percentile not using more than
41 elements may suggest that HTML is not nearly being exhausted by most documents. Yet it’s
hard to interpret what this really means for HTML and our use of it, as the semantic wealth that

155. https://html.spec.whatwg.

2020 Web Almanac by HTTP Archive no

https://almanac.httparchive.org/static/images/2020/markup/element-diversity-element-types.png
https://almanac.httparchive.org/static/images/2020/markup/element-diversity-element-types.png
https://almanac.httparchive.org/static/images/2020/markup/element-diversity.png
https://almanac.httparchive.org/static/images/2020/markup/element-diversity.png
https://html.spec.whatwg.org/multipage/

Part | Chapter 3 : Markup

HTML offers doesn’'t mean that every document would need all of it: HTML elements should be
used per purpose (semantics), not per availability.

How are these elements distributed?

Distribution of elements per page
Web Almanac 2020: Markup
desktop @ mobile

12,500
10,000 p .
7,500

5,000
P

Number of pages

2,500

R
0 500 1,000 1,500 2,000

Elements per page

Figure 3.8. Distribution of the total number of elements per page.

Not that much changed compared to 2019*!

Top elements

In 2019, the Markup chapter of the Web Almanac featured the most frequently used elements
inreference to lan Hickson’s work in 2005, We found this useful and had a look at that data
again:

156. https://almanac.httparchive.org/en/2019/markup#fig-3
157. https://web.archive.org/web/20060203031713/http://code.google. ‘webstats/2005-12/el .html

120 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/markup/distribution-of-elements-per-page.png
https://almanac.httparchive.org/static/images/2020/markup/distribution-of-elements-per-page.png
https://almanac.httparchive.org/en/2019/markup#fig-3
https://web.archive.org/web/20060203031713/http://code.google.com/webstats/2005-12/elements.html

Part | Chapter 3 : Markup

2005

title

img
meta
br
table
td

tr

Figure 3.9. The most popular elements in 2005, 2019, and 2020.

Nothing changed in the Top 7, but the option element went a little out of favor and dropped
from 8 to 10, letting both the 1ink andthe i element passin popularity. These elements

2019

div

span
li

img
script
p

option

2020

div

span
li

img
script
p

link

option

have risen in use, possibly due to an increase in use of resource hints (as with prerendering and

prefetching), as well icon solutions like Font Awesome', which de facto misuses i elements for

the purpose of displaying icons.

details and summary

Another thing we were curious about was the use of the details and summary elements,
especially since 2020 brought broad support
for—even popular—among authors? As it turns out, only 0.39% of all tested pages are using
them—although it’s hard to gauge whether they were all used the correct way in exactly the

159

. Are they being used? Are they attractive

situations when you need them—"popular” is the wrong word.

Here's a simple example showing the use of a summary ina details element:

158. https://fontawesome.com/
159. https://caniuse.com/details

2020 Web Almanac by HTTP Archive

121

https://fontawesome.com/
https://html.spec.whatwg.org/multipage/rendering.html#the-details-and-summary-elements
https://html.spec.whatwg.org/multipage/rendering.html#the-details-and-summary-elements
https://html.spec.whatwg.org/multipage/rendering.html#the-details-and-summary-elements
https://caniuse.com/details

Part | Chapter 3 : Markup

<details>
<summary>Status: Operational</summary>
<p>Velocity: 12m/s</p>
<p>Direction: North</p>

</details>

160

A while ago, Steve Faulkner pointed out™ how these two elements were used inadequately in
the wild. As you can tell from the example above, for each details element you'd need a

summary element that may only be used as the first child of details.

Accordingly, we looked at the number of details and summary elements and it seems that
they do continue to be misused. The count of summary elements is higher on both mobile and
desktop, with aratioof 1.11 summary elements for every details element on mobile, and
1.19 on desktop, respectively:

Occurrences
Element Mobile (0.39%) Desktop (0.22%)

summary 62,992 43,936
details 56,60 36,743

Figure 3.10. Adoption of the details and summary elements.

Probability of element use

Taking another look at element popularity, how likely is it to find a certain element in the DOM
of apage? Sure, html, head, body are present on every HTML page (even though these tags
are all optional), making them common elements, but what other elements are to be

commonly found?

160. https://x.com/stevefaulkner/status/806474286592561152
161. https://developer.mozilla.org/docs/Web/HTML/Element/summary#Usage_notes
162. https://meiert.com/en/blog/optional-html/

122 2020 Web Almanac by HTTP Archive

https://x.com/stevefaulkner/status/806474286592561152
https://developer.mozilla.org/docs/Web/HTML/Element/summary#Usage_notes
https://meiert.com/en/blog/optional-html/
https://meiert.com/en/blog/optional-html/

Part | Chapter 3 : Markup

Element Probability

title 99.34%
meta 99.00%
div 98.42%
a 98.32%
link 97.79%
script 97.73%
img 95.83%
span 93.98%
p 88.71%
ul 87.68%

Figure 3.11. High probabilities of finding a given element in pages of the Web Almanac 2020
sample.

Standard elements are those that are or were part of the HTML specification. Which ones are

rare to find? In our sample, that would bring up the following:

Element Probability

dir 0.0082%
rp 0.0087%
basefont 0.0092%

Figure 3.12. Low probabilities of finding a given element in pages of the sample.

We're including these elements to give an idea what elements may have gone out of favor. But
while dir and basefont were last specified in XHTML 1.0 (2000) and are no longer part of
HTML, the rare use of rp (which was mentioned as early as 1998 and is still part of HTML™),

may just suggest that ruby markup™ is not very popular.

163. https://www.w3.0rg/TR/1998/WD-ruby-19981221/#a2-4
164. https://html.spec.whatw il level- ics.html#the-rp-el t
165. https://www.w3.0rg/TR/ruby/

2020 Web Almanac by HTTP Archive 123

https://www.w3.org/TR/1998/WD-ruby-19981221/#a2-4
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-rp-element
https://www.w3.org/TR/ruby/

Part | Chapter 3 : Markup

Custom elements

The 2019 edition of the Web Almanac handled custom elements™ by discussing several non-

standard elements. This year, we found it valuable to have a closer look at custom elements.

How did we determine these? Roughly by looking at their definition™, notably their use of a

hyphen. Let’s focus on the top elements, in this case elements used on =1% of all URLs in the

sample:

These elements come from three sources: Yandex Metrica

Element

ym-measure
wix-image
rs-module-wrap
rs-module
rs-slide
rs-slides
rs-sbhg-px
rs-shg-wrap
rs-shg
rs-progress
rs-mask-wrap
rs-loop-wrap
rs-layer-wrap

wix-1iframe

Pages
141,156
76,969
71,272
71,271
70,970
70,993
70,414
70,414
70,413
70,651
63,871
63,870
63,849

63,590

Pages (%)
2.22%
1.21%
1.12%
1.12%
1.12%
1.12%
1.11%
1.11%
1.11%
1.11%
1.01%
1.01%
1.01%

1%

Figure 3.13. The 14 most popular custom elements.

168

('ym-), an analytics solution we

also saw last year; Slider Revolution” (rs-), a WordPress slider, for which there are more

166.
167.
168.
169.

https://almanac.httparchive.org/en/2019/markup#custom-elements
I

https:/t pec.whatwg.org

ts.html#cust

https://metrica.yandex.com/about
https://www.sliderrevolution.com/

ts-core-concepts

124

2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2019/markup#custom-elements
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
https://metrica.yandex.com/about
https://www.sliderrevolution.com/

Part | Chapter 3 : Markup

elements to be found near the top of the sample; and Wix™ (wix-), a website builder.

Other groups that stand out include AMP markup” with amp- elements like amp-img
(11,700 pages), amp-analytics (10,256),and amp-auto-ads (7,621), as well as Angular™
app- elementslike app-root (16,314), app-footer (6,745),and app-header (5,274).

Obsolete elements

There are more questions to ask about the use of HTML, including the use of obsolete elements
(which are elements like applet, bgsound, blink, center, font, frame, isindex,
marquee ,or spacer).

In our mobile dataset of 6.3 million pages, around 0.9 million pages (14.01%) contain one or
more of these elements. Here are the top 9, which are used more than 10,000 times:

Element Pages Pages (%)

center 458,402 7.22%
font 430,987 6.79%
marquee 67,781 1.07%
nobr 31,138 0.49%
big 27,578 0.43%
frame 19,363 0.31%
frameset 19,163 0.30%
strike 17,438 0.27%
noframes 15,016 0.24%

Figure 3.14. Obsolete elements with more than 10,000 uses.

Even spacer isstill being used 1,584 times, and present on every 5,000th page. We know that

173 174

Google has beenusinga center element on their home page™ for 22 years now™, but why are

there so many imitators?

170. https://www.wix.com/

171. https://amp.dev/

172. https://angular.io/

173. https://www.google.com/

174. https://web.archive.org/web/19981202230410/https://www.google.com/

2020 Web Almanac by HTTP Archive 125

https://www.wix.com/
https://amp.dev/
https://angular.io/
https://www.google.com/
https://web.archive.org/web/19981202230410/https://www.google.com/

Part | Chapter 3 : Markup

isindex

If you were wondering: The total number of isindex elements in this dataset is: one. Exactly

one page used an isindex element. isindex was part of the specs until HTML 4.01 and

XHTML 1.0, yet only properly specified” in 2006 (aligning with how it was implemented in

browsers), and then removed” in 2016.

Proprietary and made-up elements

In our set of elements we found some that were neither standard HTML (nor SVG nor MathML)

elements, nor custom ones, nor obsolete ones, but somewhat proprietary ones. The top 10 that

we identified are the following:

Element Pages (%)
noindex 0.89%
jdiv 0.85%
mediaelementwrapper 0.49%
ymaps 0.26%
yatag 0.20%
ss 0.11%
include 0.08%
olark 0.07%
h7 0.06%
limespot 0.05%

Figure 3.15. Elements of questionable heritage.

The source of these elements appears to be mixed, as in some are unknown while others can be

traced. The most popular one, noindex , is probably due to Yandex’s recommendation™ of it to

prohibit page indexing. jdiv was noted in last year’'s Web Almanac™ and is from JivoChat.

175.
176.
177.
178.
179.

https://meiert.com/en/indices/html-elements/
https:/lists.w3.org/Archives/Public/public-whatwg-archive/2006Feb/0111.html

https: .com/whatwg, pull/1095
https://yandex.com/support/ ing-site/indexing-prohibition.html
https://almanac.httparchive.org/en/2019/markup#prodt d-librari d-theil t kup

126

2020 Web Almanac by HTTP Archive

https://www.w3.org/TR/html401/interact/forms.html#edef-ISINDEX
https://www.w3.org/TR/html401/interact/forms.html#edef-ISINDEX
https://meiert.com/en/indices/html-elements/
https://meiert.com/en/indices/html-elements/
https://lists.w3.org/Archives/Public/public-whatwg-archive/2006Feb/0111.html
https://github.com/whatwg/html/pull/1095
https://yandex.com/support/webmaster/adding-site/indexing-prohibition.html
https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup

Part | Chapter 3 : Markup

mediaelementwrapper comes from the MediaElement media player. Both ymaps and

yatag are also from Yandex. The ss element could be from ProStores, a former ecommerce

product from eBay, and olark may be from the Olark chat software. h7 appearstobea

mistake. limespot is probably related to the Limespot personalization program for

ecommerce. None of these elements are part of a web standard.

Headings

Headings™ make for a special category of elements that play an important role in sectioning™

182

and for accessibility™.

Heading Occurrences Average per page

hl 10,524,810 1.66
h2 37,312,338 5.88
h3 44,135,313 6.96
h4 20,473,598 3.23
h5 8,594,500 1.36
hé 3,527,470 0.56

Figure 3.16. Frequency and average use of standard heading elements.

You might have expected to only see the standard <h1l> to <h6> elements, but some sites

actually use more levels:

Heading Occurrences Average per page

h7 30,073 0.005
h8 9,266 0.0015

Figure 3.17. Frequency and average use of non-standard heading elements.

The last two have never been part of HTML, of course, and should not be used.

180. https://html.spec.whatv it de ontent
181. https://html.spec.whatw il dom.html#sectioning-content-2
182. https://www.w3.0org/WAl/tutorials/page-structure/headings/

2020 Web Almanac by HTTP Archive

127

https://html.spec.whatwg.org/multipage/dom.html#heading-content
https://html.spec.whatwg.org/multipage/dom.html#sectioning-content-2
https://www.w3.org/WAI/tutorials/page-structure/headings/

Part | Chapter 3 : Markup

Attributes

This section focuses on how attributes are used in documents and explores patternsin data-

* usage. Our findings show that class isthe queen of all attributes.

Top attributes

Similar to the section on the most popular elements, this section delves into the most popular

attributes on the web. Given how important the href attribute is for the web itself, or the

alt attribute in order to make information accessible, would these be most popular

attributes?

Attribute

class
href
style
id
src
type
title
alt
rel

value

Occurrences

2,998,695,114

928,704,735

523,148,251

452,110,137

341,604,471

282,298,754

231,960,356

172,668,703

171,802,460

140,666,779

Percentage
34.23%

10.60%

5.97%

5.16%

3.90%

3.22%

2.65%

1.97%

1.96%

1.61%

Figure 3.18. Top 10 attributes by frequency of use.

The most popular attribute is class , with nearly 3 billion occurrences in our dataset and

constituting 34% of all attributes in use.

The value attribute, which specifies the value of an input element, surprisingly completes

the top 10. It’s surprising to us because, subjectively, we didn’t get the impression value

attributes were used that frequently.

128

2020 Web Almanac by HTTP Archive

Part | Chapter 3 : Markup

Attributes on pages

Are there attributes that we find in every document? Not quite, but almost:

Element Pages (%)

href 99.21%
src 99.18%
content 98.88%
name 98.61%
type 98.55%
class 98.24%
rel 97.98%
id 97.46%
style 95.95%
alt 90.75%

Figure 3.19. Top 10 attributes by page.

These results raise questions that we cannot answer. For example, type is used on other
elements, too, but why this tremendous popularity? Especially given that it’s usually not needed
to specify for style sheets or scripts, with CSS and JavaScript being assumed default. Or, how do
we really fare with alt ? Do those 9.25% of pages not contain any images or are they just
inaccessible?

data-* attributes

Per the HTML spec, data-* attributes “are intended to store custom data, state, annotations,
and similar, private to the page or application, for which there are no more appropriate
attributes or elements.” How are they used? What are the popular ones? Is there anything
interesting here?

The two most popular ones stand out because they are almost twice as popular than each of the
attributes that followed (with >1% use):

2020 Web Almanac by HTTP Archive 129

https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes

Part | Chapter 3 : Markup

Attribute Occurrences Percentage
data-src 26,734,560 3.30%
data-id 26,596,769 3.28%
data-toggle 12,198,883 1.50%
data-slick-index 11,775,250 1.45%
data-element type 11,263,176 1.39%
data-type 11,130,662 1.37%
data-requiremodule 8,303,675 1.02%
data-requirecontext 8,302,335 1.02%

Figure 3.20. The most popular data-* attributes.

Attributes like data-type, data-id,and data-src canhave multiple generic uses
although data-src isused alot with lazy image loading via JavaScript (e.g., Bootstrap 4).
Bootstrap™ again explains the presence of data-toggle ,whereit's used as a state styling
hook on toggle buttons. The Slick carousel plugin is the source of data-slick-index,
whereas data-element type is part of Elementor’s WordPress website builder. Both
data-requiremodule and data-requirecontext ,then, are part of RequireJS™.

Interestingly, the use of native lazy loading on images is similar to that of data-src.3.86% of
pages” use loading="lazy" on elements. This appears to be growing very fast, as
back in February, this number was about 0.8%™. It’s possible that these are being used together

for a cross-browser solution™.

Miscellaneous

We've covered the use of HTML in general as well as the adoption of top elements and
attributes. In this section, we're reviewing some of the special cases of viewports, favicons,
buttons, inputs, and links. One thing we note here is that too many links still point to “http”
URLs.

183. https://getbootstrap.com/

184. https://kenwheeler.github.io/slick/

185. https://elementor.com/

186. https://requirejs.org/

187. https://docs.google.com/spreadsheets/d/1ram47FshAjzvbQVIbAQPgxZN7PPOPCKIK67VIZCo92c/edit#gid=210906 1092
188. https://x.com/zcorpan/status/1237016679667970050

189. ht i.com/blog/lazy-loadi

130 2020 Web Almanac by HTTP Archive

https://getbootstrap.com/
https://kenwheeler.github.io/slick/
https://elementor.com/
https://requirejs.org/
https://docs.google.com/spreadsheets/d/1ram47FshAjzvbQVJbAQPgxZN7PPOPCKIK67VJZCo92c/edit#gid=2109061092
https://docs.google.com/spreadsheets/d/1ram47FshAjzvbQVJbAQPgxZN7PPOPCKIK67VJZCo92c/edit#gid=2109061092
https://x.com/zcorpan/status/1237016679667970050
https://addyosmani.com/blog/lazy-loading/

Part | Chapter 3 : Markup

viewport specifications

The viewport™ meta element is used to control layout on mobile browsers. While years ago, the
motto was kind of “don’t forget the viewport meta element” when building a web page,
eventually this became a common practice and the motto changed to “make sure zooming and
scaling are not disabled.”

191

Users should be able to zoom and scale the text up to 500%™ That’s why audits in popular tools

193

like Lighthouse™ or axe™ fail when user-scalable="no" isused withinthe meta

name="viewport" element,and whenthe maximum-scale attribute valueislessthan 5.

We had a look at the data and in order to better understand the results, we normalized it by
removing spaces, converting everything to lowercase, and sorting by comma values of the
content attribute.

. Pages
Content attribute value Pages (%)
initial-scale=1,width=device-width 2,728,491 42.98%
blank 688,293 10,84%
initial-scale=1,maximum-scale=1,width=device-width 373,136 5.88%

initial-scale=1,maximum-scale=1,user-

. , , 352,972 5.56%
scalable=no,width=device-width
initial-scale=1,maximum-scale=1,user-
] .] 249,662 3.93%
scalable=0,width=device-width
width=device-width 231,668 3.65%

Figure 3.21. viewport specifications, and lack thereof.

The results show that almost half of the pages we analyzed are using the typical viewport
content value. Still, around 10% of mobile pages are entirely missing a proper content
value for the viewport meta element, with the rest of them using an improper combination of

maximum-scale, minimum-scale, user-scalable=no,or user-scalable=0.

For a while now, the Edge mobile browser allows users to zoom into a web page to at least 500%",

190. https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
4.0/met:

191. https://deq iversity.com/rul iewport-large

192. ht devels 00g]

193. https://www.deque.com/axe/

194. https://blogs.windows.c ind insider/2017/01/1 ing-wind 10-insider-preview-build-15007-pc-mobile/

2020 Web Almanac by HTTP Archive 131

https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag
https://dequeuniversity.com/rules/axe/4.0/meta-viewport-large
https://developers.google.com/web/tools/lighthouse
https://www.deque.com/axe/
https://blogs.windows.com/windows-insider/2017/01/12/announcing-windows-10-insider-preview-build-15007-pc-mobile/

Part | Chapter 3 : Markup

regardless of the zoom settings defined by a web page employing the viewport meta element.

Favicons

The situation around favicons is fascinating. Favicons work with or without markup (some
browsers would fall back to looking at the domain root™), accept several image formats, and
then also promote several dozen sizes (some tools are reported to generate 45 of them;

196

realfavicongenerator.net™ would return 37 if requested to handle every case). As of this time of

197

writing, there is an open issue™ for the HTML spec to help improve the situation.

When we built our tests we didn’t check for the presence of images, but only looked at the
markup. That means, when you review the following, note that it's more about how favicons are
referenced rather than whether or how often they are used.

Favicon format Pages Pages (%)
ICO 2,245,646 35.38%
PNG 1,966,530 30.98%
No favicon defined 1,643,136 25.88%
JPG 319,935 5.04%
No extension specified (no format identifiable) 37,011 0.58%
GIF 34,559 0.54%
WebP 10,605 0.17%
SVG 5,328 0.08%

Figure 3.22. Common favicon formats.

There are a couple of surprises in here:

e Support for other formats is there but ICO is still the go-to format for favicons on
the web.

e JPGisarelatively popular favicon format even though it may not yield the best

195. https://realfavicong .net/faq; y_icons_in_root
196. https://realfavicongenerator.net/
197. https://gi . whatwg i 4758

132 2020 Web Almanac by HTTP Archive

https://realfavicongenerator.net/faq#why_icons_in_root
https://realfavicongenerator.net/
https://github.com/whatwg/html/issues/4758

Part | Chapter 3 : Markup

results (or a comparatively large weight) for many favicon sizes.

o WebP is twice as popular as SVG! This might change, however, with SVG favicon

198 +

support™ improving.

Button and input types

There has been a lot of discussion” on buttons lately and how often they are misused. We
looked into this to present findings on some of the native HTML buttons.

60.56%

Figure 3.23. Percent of pages with button elements.

Button types Occurrences Pages (%)
<button type="button"> 15,926,061 36.41%
<button> without type 11,838,110 32.43%
<button type="submit"> 4,842,946 28.55%
<input type="submit" value=".."> 4,000,844 31.82%
<input type="button" value=".."> 1,087,182 4.07%
<input type="image" src=".."> 322,855 2.69%
<button type="reset"> 41,735 0.49%

Figure 3.24. Adoption of button types.

Our analysis shows that about 60% of pages contain a button element and more than half of
those pages (32.43%) have at least one button that fails to specify a type attribute. Note that
the button element has a default type™ of submit ,so the default behavior of buttons on
these 32% of pages is to submit the current form data. To avoid possibly unexpected behavior
like this, a best practice is to specify the type attribute.

198. https://caniuse.com/link-icon-svg
199. https://adrianroselli.com/2016/01/links-buttons-submits-and-divs-oh-hell.htm|
200. ht d spec-LC/the-button-el thtml

2020 Web Almanac by HTTP Archive 133

https://caniuse.com/link-icon-svg
https://caniuse.com/link-icon-svg
https://adrianroselli.com/2016/01/links-buttons-submits-and-divs-oh-hell.html
https://dev.w3.org/html5/spec-LC/the-button-element.html

Part | Chapter 3 : Markup

Percentile Buttons per page

10 0
25 0
50 1
75 5
90 13

Figure 3.25. Distribution of the number of buttons per page.
Pages in the 10th and 25th percentiles contain no buttons at all, while a page in the 90th

percentile contains 13 native button elements. In other words, 10% of pages contain 13 or
more buttons.

Link targets

The anchor element™, or a element, links web resources together. In this section, we analyze
the adoption of the protocols included in the respective link targets.

201. https://developer.mozilla.org/docs/Web/HTML/Element/a

134 2020 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/a

Part | Chapter 3 : Markup

Protocol
https
http
mailto
javascript
tel
whatsapp
viber
skype
sms

intent

Occurrences

5,756,444

4,089,769

1,691,220

1,583,814

1,335,919

34,643

25,951

22,378

17,304

12,807

Pages (%)
90.69%
64.43%
26.64%
24.95%
21.05%
0.55%
0.41%
0.35%
0.27%

0.20%

Figure 3.26. Adoption of link target protocols.

We cansee how https and http are most dominant, followed by “benign” links to make

writing email, making phone calls, and sending messages easier. javascript standsoutasa

link target that’s still very popular even though JavaScript offers native and gracefully

degrading options to work with.

Links in new windows

71.35%

Figure 3.27. Percent of pages having neither noopener nor noreferrer attributeson
target="_blank" links.

Using target="_blank" has been known to be a security vulnerability

202

for some time now.

Yet 71.35% of pages contain links with target="_blank" ,without noopener or

noreferrer.

202. ht hiask github.i |

2020 Web Almanac by HTTP Archive

135

https://mathiasbynens.github.io/rel-noopener/

Part | Chapter 3 : Markup

Elements Pages
 13.63%
 14.14%

 0.56%

Figure 3.28. Blank relationships.

As a rule of thumb and for usability reasons™, it is recommended not to use

target="_blank" inthe first place.

Within the latest Safari and Firefox versions, setting target="_blank" on a elementsimplicitly
provides the same rel behavior as setting rel="noopener" . This is already implemented in
Chromium™ as well and will land in Chrome 88.

Conclusion

We've touched on some observations throughout the chapter, but as a reflection on the state of

markup in 2020, here are some things that stood out for us:

3.97%

Figure 3.29. Percent of pages with a quirky doctype.

Fewer pages land in quirks mode. In 2016, that number was at around 7.4%™. At the end of
2019, we observed 4.85%™. And now, we're at about 3.97%. This trend, to paraphrase Simon

Pieters in his review of this chapter, seems clear and encouraging.

Although we lack historic data to draw the full development picture, “meaningless” div ,
span,and i markup has pretty much replaced the table markup we've observed in the
1990s and early 2000s. While one may question whether div and span elements are always
used without there being a semantically more appropriate alternative, these elements are still
preferable to table markup, though, as during the heyday of the old web, these were

seemingly used for everything but tabular data.

203. https://www.nngroup.com/articles/new-browser-windows-and-tabs/
204. ¥ ium-revi e.com/c, i +/1630010
205. ://discuss.httparchive.org/ y-and-which-p in-quil
206. https://x.com/zcorpan/status/1205242913908838400

k de/777

136 2020 Web Almanac by HTTP Archive

https://www.nngroup.com/articles/new-browser-windows-and-tabs/
https://chromium-review.googlesource.com/c/chromium/src/+/1630010
https://chromium-review.googlesource.com/c/chromium/src/+/1630010
https://discuss.httparchive.org/t/how-many-and-which-pages-are-in-quirks-mode/777
https://x.com/zcorpan/status/1205242913908838400

Part | Chapter 3 : Markup

Elements per page and element types per page stayed roughly the same, showing no significant
change in our HTML writing practice when compared to 2019. Such changes may require more
time to manifest.

Proprietary product-specific elements like g:plusone (used on 17,607 pages in the mobile
sample) and fb:like (11,335) have almost disappeared after still being among the most
popular ones™ last year. However, we observe more custom elements for things like Slider
Revolution, AMP, and Angular. Elements like ym-measure, jdiv,and ymaps are also still
prevalent. What we imagine we're seeing here is that, under the sea of slowly changing
practices, HTML is very much being developed and maintained, as authors toss deprecated

markup and embrace new solutions.

Now, the 2019 Web Almanac Markup chapter™ had 14 years of catch up to do since the last
major study on the topic, so you'd think we wouldn’t have much to cover in the year since. Yet
what we observe with this year’s data is that there’s a lot of movement at the bottom and near
the shore of said sea of HTML. We approach near-complete adoption of living HTML. We are
quick to prune our pages of fads like Google and Facebook widgets. We're also fast in adopting
and shunning frameworks, as both Angular and AMP (though a “component framework”) seem

to have significantly lost in popularity, likely for solutions like React and Vue.

And still, there are no signs we exhausted the options HTML gives us. The median of 30
different elements used on a given page, which is roughly a quarter of the elements HTML
provides us with, suggests a rather one-sided use of HTML. That is supported by the immense
popularity of elements like div and span, and no custom elements to potentially meet the
demands that these two elements may represent. Unfortunately, we couldn’t validate each
document in the sample; however, anecdotally and to be taken with caution, we learned that
79%" of W3C-tested documents have validation errors. After everything we've seen, it looks

like we're still far from mastering the craft of HTML.

That compels us to close with an appeal: Pay attention to HTML. Focus on HTML. It’s important
and worthwhile to invest in HTML. HTML is a document language that may not have the charm
of a programming language, and yet the web is built on it. Use less HTML and learn what’s really
needed. Use more appropriate HTML—learn what’s available and what it’s there for. And
validate™ your HTML. Anyone can write invalid HTML (just invite the next person you meet to
write an HTML document and validate the output) but a professional developer can be
expected to produce valid HTML. Writing correct and valid HTML is a craft to take pride in.

For the next edition of the Web Almanac’s chapter, let’s prepare to look closer at the craft of

writing HTML and, hopefully, how we've been improving on it.

207. https://almanac.httparchive.org/en/201 p#pl ts-and-librari d-their-cust kup
208. https://almanac.httparchive.org/en/2019/markup
209. https://github.com/HTTPArchive/ali httparchive.org/i: i omment-717856201

210. https://validator.w3.org/docs/why.html

2020 Web Almanac by HTTP Archive 137

https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup
https://almanac.httparchive.org/en/2019/markup#products-and-libraries-and-their-custom-markup
https://almanac.httparchive.org/en/2019/markup
https://github.com/HTTPArchive/almanac.httparchive.org/issues/899#issuecomment-717856201
https://validator.w3.org/docs/why.html

Part | Chapter 3 : Markup

We're leaving the rest open to you. What are your observations? What has caught your eye? What do
you think has taken a turn for the worse, and what has improved? Leave a comment™ to share your
thoughts!

Authors

Jens Oliver Meiert

X @j9t @ @https://mas.to/@j9t W @meiert.com 9t M meiert @ https://meiert.com/en/

Jens Oliver Meiert is a web developer and author (CSS Optimization Basics™, The
Web Development Glossary**), who works as an engineering manager at Jimdo™.

He’s an expert on web development specializing in HTML and CSS optimization.
Jens contributes to technical standards and regularly writes about his work and

research, particularly on his website, meiert.com™.

Catalin Rosu

X @catalinred) catalinred @ https://catalin.red/

Catalin Rosu is a front-end developer at Caphyon™ and currently works on
Wattspeed™. He has a passion for web standards and a keen eye for great UX & Ul,

218 219

things he tweets™ and writes about on his website™.

lan Devlin

X @iandevliin) iandevliin @ https:/iandevlin.com

lan Devlin is a web developer who advocates for good, semantic HTML, as well as
accessibility. He once wrote a book about HTML5 Multimedia®, and sporadically

221

writes on his website™ about the Web and other things. He currently works as a

1=

Senior Frontend Engineer at real.digital™ in Germany.

211. https://discuss.httparchive.org/t/2039
212. https:/I com/cs: imization-basics

213, htps/k b.c b-dl glossary

214. https://www.jimdo.com/

215. https://meiert.com/en/

216. https://www.caphyon.com/

217. https://www.wattspeed.com/

218. https://x.com/catalinred

219. https://catalin.red/

220. https:, peachpit. html. imedia-develop-and-design-9780321793935
221. https://iandevlin.com/

222. https://www.real-digital.de/

138 2020 Web Almanac by HTTP Archive

https://discuss.httparchive.org/t/2039
https://x.com/j9t
https://mas.to/@j9t
https://bsky.app/profile/meiert.com
https://github.com/j9t
https://www.linkedin.com/in/meiert/
https://meiert.com/en/
https://leanpub.com/css-optimization-basics
https://leanpub.com/web-development-glossary
https://leanpub.com/web-development-glossary
https://www.jimdo.com/
https://meiert.com/en/
https://x.com/catalinred
https://github.com/catalinred
https://catalin.red/
https://www.caphyon.com/
https://www.wattspeed.com/
https://x.com/catalinred
https://catalin.red/
https://x.com/iandevlin
https://github.com/iandevlin
https://iandevlin.com/
https://www.peachpit.com/store/html5-multimedia-develop-and-design-9780321793935
https://iandevlin.com/
https://www.real-digital.de/

Part | Chapter 4 : Fonts

Partl Chapter 4
Fonts

Written by Raph Levien and Jason Pamental

Reviewed by Roel Nieskens, Chris Lilley, Dave Crossland, Rod Sheeter, and Mandy Michael
Analyzed by Abby Tsai

Edited by Barry Pollard

Introduction

Text is at the heart of most web sites, and typography is the art of presenting that text in a way
that’s visually appealing and effective. Creating good typography requires choosing the
appropriate fonts and designers have a tremendous range of web fonts to choose from. As with
all resources, there are performance and compatibility concerns but, done right, the benefit is
well worth it. In this chapter, we'll dive into data to show how web fonts are being used, and in

particular how they’re optimized.

Where are web fonts being used?

Web font usage has been growing steadily over time (it was near zero as late as 2011), with
82% of web pages for desktop using web fonts, and mobile at 80%.

2020 Web Almanac by HTTP Archive 139

Part | Chapter 4: Fonts

Web font usage
Web Almanac 2020: Fonts
@ desktop @ mobile

100%
¥aastt
.3 75% _osesiisisases
g ..u“"r«m""“’"'vm-
L K ptet)
5 50% e
2 Rt rni‘
g oes® .'“.."
c o o
S 25% i
& ol
0%,
ooooeens®®
e L
0% no-'”.“w..’.
1/1/2012 1/1/2014 1/1/2016 1/1/2018 1/1/2020
Date

Figure 4.1. Web font usage over time.

Usage of web fonts is fairly consistent around the world, with a few outliers. The charts below
are based on the median number of kilobytes of web fonts per web page, which can be an
indicator of lots of fonts, large fonts, or both.

22616 HET N 15‘%7‘1.

Figure 4.2. Web fonts usage by country (desktop).

140 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-by-country.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-by-country.png

Part | Chapter 4 : Fonts

The country that uses the most font bytes is South Korea, which is not all that surprising given
their consistently high internet speeds and low latency and the fact that Korean (Hangul) fonts
are almost an order of magnitude larger than Latin. Web font usage in Japan and Chinese-
speaking countries is considerably lower, likely because Chinese and Japanese fonts are vastly
larger (the median font size can be 1000 times or more larger than the median Latin size). This
means web font usage in Japan is very low, and usage in China is effectively zero. Although

223

recent developments in progressive font enhancement™-which we will cover more below-may
make web fonts usable in both countries within a couple of years. There have been reports that
Google Fonts have not been reliably accessible in China and that might also have been a factor

holding back adoption.

Web font usage, top countries (desktop)
Web Almanac 2020: Fonts

|
Korea, Republic of
Turkey

Iran (Islamic l
Republic of) |

Slovenia

Greece

Country

|
Saudi Arabia

Australia

United States of l
America |

Poland
|
0 50 100 150 200

Median kBytes

Figure 4.3. Web fonts usage, top countries (desktop).

There’s an interesting thread on web font usage by country™ on the HTTP Archive discussion
forum that certainly influenced the queries used by this chapter. Given the large number of
typefaces produced for Asian languages, it’s likely usage will rise in that region as technology

for serving those fonts more efficiently becomes available.

223. https://www.w3.0rg/TR/2020/NOTE-PFE-evaluation-20201015/
224. ht; di httparchive.org d b-font- y-by-country/1649

2020 Web Almanac by HTTP Archive 141

https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-top-countries.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-fonts-usage-top-countries.png
https://discuss.httparchive.org/t/how-does-web-font-usage-vary-by-country/1649

Part | Chapter 4 : Fonts

Serving with a service

It likely comes as no surprise that Google Fonts

70.3%

Figure 4.4. Popularity of Google Fonts amongst font-hosting services.

remains by far the most popular platform, but

the percentage use has actually dropped almost 5% from 2019 to about 70%. Adobe Fonts™

ormerly Typekit) has dropped about 3% as well, but Bootstrap usage
(f ly Typekit) has d d about 3% I, but B

227

has grown from about

3% to over 6% (in aggregate from several providers). It is worth noting that the largest provider

for Bootstrap (BootstrapCDN™) also provides icon fonts from Font Awesome™, so it may be
that it is not Bootstrap itself but rather older versions also referencing icon font files that is

behind the rise in that source data.

Another surprise in the data is the rise in fonts being served by Shopify*. Growing from roughly
1.1%in 2019 to about 4% in 2020, there has clearly been a significant uptick in usage of web
fonts by sites hosted on that platform. It is unclear if that is due to that service offering more

fonts that they host on their CDN, if it is growth in use of their platform, or both. However, the
increase in usage of both Shopify and Bootstrap represent the largest amount of growth other

than Google Fonts, making it a very noticeable data point.

225.
226.
227.
228.
229.
230.

https://fonts.google.com/
https://fonts.adobe.com/
https://getbootstrap.com/
https://www.bootstrapcdn.com/
https://fontawesome.com/
https://www.shopify.com/

142

2020 Web Almanac by HTTP Archive

https://fonts.google.com/
https://fonts.adobe.com/
https://getbootstrap.com/
https://www.bootstrapcdn.com/
https://fontawesome.com/
https://www.shopify.com/

Part | Chapter 4 : Fonts

Not all services have the same service

Median FCP of sites using hosted fonts
Web Almanac 2020: Fonts
desktop [l mobile

static.parastorage.com | — e 3,060

fonts.shopifycdn.com 4’426
cdn.shopify.com 4,676
cdnjs.cloudflare.com 5167
maxcdn bootstrapcdn.c i
B {dna.bootstrapcdn.co 5.224
netdna.bootstrapcdn.co
E: . 5,304
use.fontawesome.com 5572
’
fonts.gstatic.com 5.709
)
cdn jsdelivr.net 6.434
’
use.typekit.net 7,370
L)
0 2,500 5,000 7,500 10,000
Milliseconds

Figure 4.5. Median FCP of sites using hosted fonts.

It was interesting to note the differences in speed for sites using the various free/open source
and commercial services. When looking at First Content Paint (FCP) and Last Content Paint
(LCP) times, sites using Google Fonts are roughly in the middle, but generally a bit slower than
the median value. The fastest sites in the dataset are Shopify and Wix (serving assets from

parastorage.com), and it might be presumed they focus on a small number of highly
optimized files. Google on the other hand is also serving web fonts globally of widely varying
sizes (due to language), likely resulting in slightly slower median times.

2020 Web Almanac by HTTP Archive 143

https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-fcp-of-sites-using-hosted-fonts.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-fcp-of-sites-using-hosted-fonts.png

Part | Chapter 4 : Fonts

Median LCP of sites using hosted fonts
Web Almanac 2020: Fonts
desktop [l mobile

cdn.shopify.com 8,401
fonts.shopifycdn.com 8,531
netdna.bootstrapcdn.co !
m 8,183
maxcdn.bootstrapcdn.c
on 8,530
cdnjs.cloudfiare.com 8,730
— £l
17}
% use fontawesome.com 9,1 66
fonts.gstatic.com 9,558
’
cdn.jsdelivr.net 10,646
Ll
static.parastorage.com 11,813
'
use.typekit.net 12,552
Ll
0 5,000 10,000 15,000

Milliseconds

Figure 4.6. Median LCP of sites using hosted fonts.

When viewing commercial services such as Adobe (use. typekit.net) or Monotype

(fast.fonts.com)itisinteresting to note that on desktop they tend to be as fast or slightly
faster than Google Fonts, but are noticeably slower on mobile. Conventional wisdom has
generally held that the tracking scripts used by those services substantially slow them down,
but that is apparently less an issue today than it has been in years past. While it’s true that we
are measuring site performance and not necessarily performance of the font host, those
tracking scripts impact font loading on the client so it seems relevant to include these
observations.

Self-hosting isn’t always better

Self-hosting fonts on the same domain as the website can be faster, as we discovered for this

231

very website™, however this is not always the case as the data shows.

231 https: you-self-host-google-font:

144 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-lcp-of-sites-using-hosted-fonts.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-median-lcp-of-sites-using-hosted-fonts.png
https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/

Part | Chapter 4 : Fonts

Web font hosting performance (desktop)
Web Almanac 2020: Fonts
Median FCP [l Median LCP

self-hosted
4,176
[
= ternal
p external
£ 3,671
8
I
both
5,044
0 2,000 4,000 6,000
Milliseconds
Figure 4.7. Web font hosting performance, desktop.
Web font hosting performance (mobile)
Web Almanac 2020: Fonts
Median FCP [l Median LCP
self-hosted
8,521
[}
S
o external
£ 8,229
7}
o
T
both
9,900
0 2,500 5,000 7,500 10,000 12,500
Milliseconds

Figure 4.8. Web font hosting performance, mobile.

It wouldn’t be sound to infer causality between hosting strategy from the above data, as there
are other variables that may confound the relationship. But, putting that aside, we find that
adding the self-hosting fonts doesn’t always lead to better performance. Hosted font solutions
often perform a number of optimizations (like subsetting, removing OpenType features, and
ensuring the smallest possible font format) that may not always be replicated when self-

2020 Web Almanac by HTTP Archive 145

https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-mobile.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-hosting-performance-mobile.png

Part | Chapter 4 : Fonts

hosting.
Local isn’t always better

Another option from self-hosting fonts on the site’s server, is to use the system-installed fonts
on the client where they exist through the use of local inthe font-face declaration. The
use of local iscontroversial™, as it can save bytes, but it can also yield bad results if the
locally installed version of the font is outdated. As of November 2020, Google Fonts has
moved to using local only for Roboto on mobile platforms, otherwise the font is always
fetched over the network.

Racing to first paint

The biggest performance concern about integrating web fonts is that they may delay the time
when the first readable text is displayed. Two optimization techniques can help mitigate those
issues: font-display and resource hints.

The font-display setting controls what happens while waiting for the web font to load and
is generally a trade-off between performance and visual richness. The most popular is swap ,
used on about 10% of web pages, which displays using the fallback font if the web font doesn’t
load quickly, then swaps in the web font when it does load. Other settings include block,
which delays displaying text at all (minimizing the potential flashing effect), and fallback,
whichislike swap but gives up quickly and uses the fallback font if the font doesn’t load in a
moderate amount of time, and optional , which immediately gives up and uses the fallback
font; this is used by only 1% of web pages, presumably those most concerned with
performance.

232. https;, font-anti-patterns-local-fonts.html
233. https://x. cum/guoglefonts/status/ 1 328 76 154704 11489297%=19

146 2020 Web Almanac by HTTP Archive

https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://x.com/googlefonts/status/1328761547041148929?s=19
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

Part | Chapter 4 : Fonts

Usage of font-display
Web Almanac 2020: Fonts
mobile [l desktop

12.5%
10.3%

10.0%
3
(]
&

0
o T 5.6%
(] L)
£ so0% 4.2%
[=
8
@
e 5w 0.9%
0.1%
0.0% ||
swap auto block fallback optional

Font-display value

Figure 4.9. Usage of font-display.

We can analyze the effect of these settings on First Contentful Paint and Largest Contentful
Paint. Not surprisingly, the optional setting has a major effect on Largest Contentful Paint.
There is also an effect on First Contentful Paint, but that might be more correlation than
causation, as all of the modes except for block display some text after an “extremely small

block period.”

2020 Web Almanac by HTTP Archive 147

https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-font-display.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-font-display.png

Part | Chapter 4 : Fonts

font-display performance (desktop)
Web Almanac 2020: Fonts
Median FCP [l Median LCP

optional 3.055
)

swap
3
[none
g
% fallback
bt
€
uO_ block 4 696

’
auto 4,883
0 2,000 4,000 6,000
Milliseconds
Figure 4.10. font-display performance on desktop.
font-display performance (mobile)
Web Almanac 2020: Fonts
Median FCP [l Median LCP
optional 6.598
’

swap
E
g none
&
& fallback
7
€
UO_ block 9 625

’
auto 10,103
0 2,500 5,000 7,500 10,000 12,500

Milliseconds

Figure4.11. font-display performance on mobile.

There are two other interesting inferences from this data. One might expect the block setting

to have a significant impact on FCP, especially on mobile, but in practice the effect is not that

large. That suggests that waiting for font assets is seldom the limiting factor for the web page

performance as a whole, though it would certainly be a major factor in pages without lots of

resources such as images. The auto setting (which is also what you get if you don't specify it) is

148

2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-mobile.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-display-performance-mobile.png

Part | Chapter 4 : Fonts

up to the browser. It looks a lot like block because the default is blocking in most cases™.

Finally, one justification for using fallback istoimprove Largest Content Paint times
compared to swap (whichis more likely to respect the designer’s visual intent), but the data do
not support this case; this performance metric is no better. Perhaps this is why the setting is not
popular, used by only about 1% of pages.

Google Fonts now recommends swap inits suggested integration code. If you're not using it
now, adding it might be a way to improve performance, especially for users on slow
connections.

Resource hints

While font-display canspeed up the presentation of the page when the fonts are slow to

load, resource hints can move the loading of web font assets to earlier in the cascade.

Ordinarily, fetching web fonts is a two-stage process. The first stage is loading the CSS, which
contains a reference (in @font-face sections)to the actual font binaries.

This is especially relevant for hosted font solutions. Only after discovering the font is needed,
can the connection to that server begin, which further breaks down into the DNS query for the
server, and actually initiating a connection (which, these days, usually involves an HTTPS
cryptographic handshake).

234. https://nooshu.github.io/blog/2020/02/23/improving-perceived-performance-with-the-css-font-display-property/

2020 Web Almanac by HTTP Archive 149

https://nooshu.github.io/blog/2020/02/23/improving-perceived-performance-with-the-css-font-display-property/

Part | Chapter 4 : Fonts

Percentage of pages

Fonts resource-hints usage
Web Almanac 2020: Fonts

mobile [l desktop

40%
32%
30%
20% 16%
8%
10% o,
3%
0% ||
dns-prefetch preload preconnect prefetch prerender

Resource hint

Figure 4.12. Resource hints use on fonts.

Adding a resource hint element™ in the HTML starts that second connection earlier. The

various resource hint settings control how far that gets before having the URL for the actual

font resource. The most common (at about 32% of web pages) is dns-prefetch , even though

in most cases there are better choices.

Next we will look at whether these resource hints have an impact on page performance.

235.

ttps://y

3.0rg/TR/resourc

e-hints

150

2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-use.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-use.png
https://www.w3.org/TR/resource-hints/#resource-hints

Part | Chapter 4 : Fonts

Font resource-hint performance (desktop)
Web Almanac 2020: Fonts

Median FCP [l Median LCP

prerender 2 904

preload
E
[prefetch
Ky
% preconnect
3
=
= none 4,816

dns-prefetch 5061
0 2,000 4,000 6,000
Milliseconds
Figure 4.13. Resource hints performance, desktop.
Font resource-hint performance (mobile)
Web Almanac 2020: Fonts
Median FCP [l Median LCP
d
prerenaer 7,362

preload
g 8,222
g prefetch 8,191
a

t
% preconnec 9,1 31
kS
2 none 10,027
dns-prefetch 9962
’
0 2,500 5,000 7,500 10,000 12,500

Milliseconds

Figure 4.14. Resource hints performance, mobile.

Analysis of this data suggests that the dns-prefetch setting, while the most popular, doesn't
improve performance much, if at all. Presumably, the DNS for popular web font servers are
likely to be cached anyway. The other settings give a lot more bang for the buck, with
preconnect being asweet spot for ease of use, flexibility, and performance improvement. As
of March 2020, Google Fonts recommends adding this line to the HTML source, immediately

2020 Web Almanac by HTTP Archive 151

https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-desktop.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-mobile.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-resource-hints-performance-mobile.png

Part | Chapter 4 : Fonts

before the CSS link:
<link rel="preconnect" href="https://fonts.gstatic.com">

The use of preconnect has grown considerably since last year, now at 8% from 2%, but
there’s a lot more potential performance still left on the table. Adding this line might be the
single best optimization for web pages that use Google Fonts.

It might be tempting to go even farther into the pipeline, preloading or prerendering the font
asset, but that potentially conflicts with other optimizations, such as fine-tuning the font for the
capabilities of the rendering engine, or the unicode-range optimization described below. To
preload a resource, you have to know exactly what resource to load, and the best resource for
the task may depend on information not readily available at HTML authoring time.

Home on the (Unicode) range

Fonts increasingly have support for lots and lots of languages. Other fonts can have a large
number of glyphs because the writing system (especially CJK) requires it. Either reason can
increase the file size. That’s unfortunate if the web page is not in fact a multilingual dictionary,
and only uses a fraction of the font’s capabilities.

One older approach is for the HTML author to explicitly indicate a font subset. However, that
requires deeper knowledge of the content, and risks a “ransom note” effect when the content
uses characters supported by the font but not by the chosen subset. See the excellent essay
When fonts fall” by Marcin Wichary for lots more detail about how fallback works.

Static subsets, indicated by unicode-range, are a better approach to this problem. The font
is sliced into subsets, each with a separate @font-face rule that indicates the Unicode
coverage for that slice witha unicode-range descriptor. The browser then analyzes the
content as part of its rendering pipeline, and downloads only the slices needed to render that
content.

For alphabetic languages, this typically works well although it can result in poor kerning
between characters in different subsets. For languages which rely on glyph shaping, such as
Arabic, Urdu and many Indic languages, static subsets frequently result in broken text
rendering. And for CJK, static subsets based on contiguous Unicode ranges provide almost no
benefit because the characters used on a particular page are scattered almost randomly across
the various subsets. Because of these issues, correct and performant use of static subsets is

236. https://www.figma.com/blog/when-fonts-fall/

152 2020 Web Almanac by HTTP Archive

https://www.figma.com/blog/when-fonts-fall/

Part | Chapter 4 : Fonts

tricky, and requires careful analysis and implementation.

Fonts unicode-range usage
Web Almanac 2020: Fonts

unicode-range [l none

desktop 62.95%
t
2
(&)
mobile 61.73%
0.00% 25.00% 50.00% 75.00%

Percentage of pages

Figure 4.15. Usage of unicode-range .

Correctly applying unicode-range is tricky, as there’s a lot of complexity to the way text
layout maps Unicode into glyphs, but Google Fonts does this automatically and transparently. It
is only likely to be a win for fonts with large glyph counts. In any case, current usage is 37% on
desktop and 38% on mobile.

Formats and MIME types

WOFF2 is the best compression format and is now supported™ by effectively all browsers
except for versions 11 and earlier of Internet Explorer. It is almost possible to serve web fonts
using an @font-face rule witha WOFF2 source only. This format makes up about 75% of all
fonts served.

237. https://caniuse.com/woff2

2020 Web Almanac by HTTP Archive 153

https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-unicode-range.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-usage-of-unicode-range.png
https://caniuse.com/woff2

Part | Chapter 4 : Fonts

Popular web font MIME types
Web Almanac 2020: Fonts

desktop [l mobile

0,
.32%
80.00% 74.32%
» 60.00%
(]
(o]
©
Q
O 40.00%
o
3
[=
8
5 20.00% 11.61% 6.00°
.09% %
. 4.42% 1.32%
0.00% || || J—
woff2 woff octet-stream ttf plain
MIME Type

Figure 4.16. Popular web font MIME types.

WOFF is an older, less efficient compression mechanism, but almost universally supported,
accounting for an additional 11.6% of fonts served. In almost all cases (Internet Explorer 9-11
being the main exception), serving a font as WOFF is leaving performance on the table, and
shows arisk of self-hosting; even if the format choices were optimal at the time of integration, it
requires extra effort to update them as browsers improve. Using a hosted service guarantees
that the best format is chosen, along with all relevant optimizations.

Ancient versions of Internet Explorer (6-8), which still make about 1.5% of global browser
share, only support the EOT format. These don’t show up in the top 5 MIME formats but are
necessary for maximum compatibility.

Uncompressed fonts, like OTF and TTF files, are 2-3x larger than compressed, but still make up
almost 5% of all fonts served, disproportionately on mobile. If you're serving these, it should be
ared flag that optimization is possible.

Popular fonts

Icon fonts are half of the top 10 most popular web fonts, the rest being clean, robust sans-serif
typeface designs (Roboto Slab is at #19 and Playfair Display at #26 in this ranking, for debuts of
other styles, though serif designs are well represented in the tail of the distribution).

154 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-font-mime-types.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-web-font-mime-types.png

Part | Chapter 4 : Fonts

Most popular web fonts
Web Almanac 2020: Fonts

desktop [l mobile

FontAwesome 35%
Open Sans
Roboto

Glyphicons Halflings

Lato

Font

Montserrat

Font Awesome 5 Brands

Font Awesome 5 Free

Raleway

dashicons

0% 10% 20% 30% 40%

Percent of pages

Figure 4.17. Popular typefaces.

A note of caution, in determining the most popular fonts you can get different results
depending on measurement methodology. The chart above is based on counting the number of
pages that include an @font-face rule referencing the named font. That counts multiple
styles only once, which arguably weights in favor of single-style fonts.

Color fonts

Color fonts, in one form or other, are supported by most modern browsers, but usage is still
close to nonexistent (a total of 755 pages total, the majority of which are in SVG format, which
is not supported in Chrome). No doubt part of the problem is the diversity of formats, in fact
four in widespread use. These come in bitmap and vector flavors. The two bitmap formats are
technologically very similar, but SBIX (originally a proprietary Apple format) is not supported in
Firefox, while CBDT/CBLC is not supported in Safari.

The COLR vector format is supported on all major modern browsers, but only fairly recently.

2020 Web Almanac by HTTP Archive 155

https://almanac.httparchive.org/static/images/2020/fonts/fonts-popular-typefaces.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-popular-typefaces.png

Part | Chapter 4 : Fonts

The fourth format is embedding SVG in OpenType (not to be confused with SVG fonts), but not
supported in Chrome. One drawback of SVG in OpenType is lack of support for font variations,
an increasingly important aspect of modern Web design. For this reason, the COLR format is
likely to prevail, particularly as support for gradients and clipping is being developed for a
future version of COLR. Vector formats are usually much smaller than images, and also scale
cleanly to larger sizes, so when COLR arrives with a richer shading model, it could well become

popular.

One reason for the poor support of color fonts on the web is that the colors have to be baked
into the font files themselves. If you use the same typeface with three different color
combinations, near-identical files have to be downloaded three times and changing a color

means reaching for a font editor.

238

While there is a feature in CSS to override or replace the color palettes in fonts™, this has not
yet been implemented in browsers, which certainly holds back the ease of deploying color web

fonts.

Probably most usage of color fonts is for emoji, but the capability is general purpose and color
fonts offer many design possibilities. While color web fonts haven't taken off yet, the underlying
technology is heavily used to deliver system emoji, where file format compatibility is much less

of anissue.

Browser support is so fragmented that color fonts are not yet tracked by caniuse.com, though

239

there is an issue open for it™.

Lots more information about color fonts, including examples, are available at colorfonts.wtf*.

Variable fonts

11.00%

Figure 4.18. Usage of variable fonts on mobile.

Variable fonts are certainly one of the biggest stories this year. They're seen in 10.54% of
desktop pages, and 11.00% of mobile. That’s up from an average of 1.8% last year, a huge
growth factor. It is not hard to see why their popularity is increasing - they offer more design
flexibility, and also potentially smaller binary font sizes, especially if multiple styles of the same

238. https://drafts.csswg.org/css-fonts-4/#font-palette-values
239. i .com/Fyrd/caniuse/i 1018
240. https://www.colorfonts.wtf/

156 2020 Web Almanac by HTTP Archive

https://drafts.csswg.org/css-fonts-4/#font-palette-values
https://github.com/Fyrd/caniuse/issues/1018
https://www.colorfonts.wtf/

Part | Chapter 4 : Fonts

font are used on the same page.

Likely the greatest driver of this increase is due to Google Fonts now serving a number of their
more popular offerings as variable fonts when there are enough weights in use on a page and
the browser supports them. The ability to 'swap in’ variable fonts where a performance gain can
be achieved without altering any of the CSS in use or any intervention required of the web
author is a remarkable testament to the viability of the technology.

The simplest description of the variable font format is a single font file that acts as many: rather
than individual font files for every weight and width or even italics, they can all be contained in a
single, highly efficient file. That resulting file can render the font at a given combination of axis
values via CSS (or other applications that support them). There are a number of standardized,
or 'registered’, axes plus the ability for font designers to define their own axes and expose them
to the user.

Weight (wght) corresponds to the traditional notion of regular or bold or light; width (wdth)
maps to styles like condensed or extended; slant (slnt) refers to an oblique angle of the font;
italic (ital) usually slants the font and replaces certain glyphs with alternate styles; and
optical size (opsz) refers to something relatively new to the web, but is actually arevival of a
technique common in metal type creation going back hundreds of years. Historically, optical
sizing refers to the practice of reducing stroke contrast (thick and thin lines) and open up letter
spacing when a font is made at a physically smaller size in order to increase legibility, and
conversely to increase that contrast and tighten spacing when a font is displayed at much larger
sizes. Enabling this in digital type can allow a single font to look and behave substantially
differently when used at very small or large sizes. You can learn more about them and see lots
of examples at variablefonts.io™.

241. https://variablefonts.io

2020 Web Almanac by HTTP Archive 157

https://variablefonts.io/

Part | Chapter 4 : Fonts

Usage of font-variation-settings axes
Web Almanac 2020: Fonts
desktop [l mobile

100.0% 90.4%
" 75.0%
D
(=]
[}
Q
o 50.0%
[=]
8
[=
8
E 25.0% X
43% 12% 14% 06% 0.4%
0.0% -
wght wdth opsz sint fanu ital

Figure 4.19. Usage of font-variation-settings axes.

By far the most commonly used axisis wght (which controls weight), at 84.7% desktop and
90.4% mobile. However, wdth (width) accounts for approximately 5% of variable font usage. In
2020, Google Fonts began serving 2-axis fonts with both width and weight axes.

It is worth noting that the preferred method istouse font-weight and font-stretch
rather than the lower-level font-variation-settings syntax for these two axes as they
are completely supported by all browsers that support variable fonts. By setting weight via

font-weight: [number] andwidthvia font-stretch: [number]%,authorsprovide
more appropriate style hints to the browser, which in turn enables better rendering for the end
user should the variable font fail to load. This also avoids altering the normal inheritance of
styles via the cascade.

The optical size (opsz) feature is used for approximately 2% of the variable font usage. This is
one to watch, as tuning the appearance of a font to match its intended size of presentation
improves the visual refinement in perhaps subtle but very real ways. Usage is also likely to
increase once some current cross-browser and cross-platform uncertainties on how the optical
sizes are defined are cleared up. One appealing aspect of the optical size feature is that with the

auto setting, the variation happens automatically, so the developer gets the benefit of that
refinement just by using a font with the opsz feature.

There are many potential benefits to using variable fonts. While each included axis increases
file size, the tipping point seems to be generally if more than two or three weights of a given
typeface are in use, a variable version will likely be similar in total file size or smaller. This is

158 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-variation-settings-usage.png
https://almanac.httparchive.org/static/images/2020/fonts/fonts-font-variation-settings-usage.png

Part | Chapter 4 : Fonts

supported by the dramatic increase in variable fonts being served by Google Fonts™.

Adopting and leveraging variable fonts for more varied design (by using more of the available
range of weights and widths) is another. Using a width axis could improve line wrapping on
smaller screens, especially with larger headings and longer languages. With the rise in adoption
of alternate light modes, making small adjustments to font-weight when switching modes can

243

improve legibility (see variablefonts.io* for more on usage and implementation).

Conclusion

Web font technology is fairly mature, with incremental improvements in compression and
other technical improvements, but new features are arriving. Browser support for variable
fonts has become quite good, and this is the feature that’s seen the most growth in the previous

year.

The performance landscape is changing somewhat, as the advent of cache partitioning™
reduces the performance benefit from sharing the cache of CDN font resources across multiple
sites. The trend of hosting more font assets on the same domain as the site, rather than using a
CDN, will probably continue. Even so, services such as Google Fonts are highly optimized, and
best practices such as use of swap and preconnect mitigate much of the impact of the
additional HTTP connection.

The use of variable fonts is accelerating greatly, and that trend will no doubt continue,
especially as browser and design tool support improve. It is also possible that 2021 will be the
year of the color web font; even though the technology has been in place, that certainly hasn't
happened yet.

Finally, it is worth mentioning a new concept in web font technology currently being researched
by the W3C’s Web Font Working Group: Progressive Font Enrichment. PFE is designed as an

answer to many of the challenges pointed out in this chapter: addressing performance and user
experience when using large glyph count font files (like Arabic or CJK fonts), larger multi-axis or

color fonts, or just slow network connectivity environments.

The concept inits simplest terms is that only a portion of a given font file would need to be
downloaded in order to render the content on a given page. Subsequent page loads would then
deliver a’patch’ to the font file that includes only the glyphs necessary to render each new page.

Thus at no time would the user need to download the whole font file at once.

There are various details to work out, including ones that will help ensure privacy and

242. https:/fonts.google.com/?vfonly=true
243. https://variablefonts.io
244. ht devele 008 b/upd '2020/10/http-cache-partitioning

2020 Web Almanac by HTTP Archive 159

https://fonts.google.com/?vfonly=true
https://variablefonts.io/
https://developers.google.com/web/updates/2020/10/http-cache-partitioning

Part | Chapter 4 : Fonts

backwards compatibility—but initial research has been extremely promising, and it is hoped
this technology will reach the wider web sometime in the next couple years. You can learn more
about it in this introduction by Jason Pamental™, and read the full Working Group Evaluation
Report™ on the W3C site.

Authors

Raph Levien
X @raphlinus € raphlinus @ https:/levien.com

Raph Levien has been working with fonts for over 35 years, including a PhD from
UC Berkeley in font design tools. He is rejoining Google Fonts™
technology researcher, after having co-founded the team in 2010.

as afont

Jason Pamental

X @jpamental) jpamental @ https:/rwt.io

Designer, tinkerer, typographer. Author of Responsive Typography, Invited Expert
to the W3C, and 10yrs+ experience focused on better typography on the web.

245, https://rwt.i

ip ive-font-enrich .
246. https://www.w3.0rg/TR/2020/NOTE-PFE-evaluation-20201015/

247. https://fonts.google.com/

160

2020 Web Almanac by HTTP Archive

https://rwt.io/typography-tips/progressive-font-enrichment-reinventing-web-font-performance
https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
https://www.w3.org/TR/2020/NOTE-PFE-evaluation-20201015/
https://x.com/raphlinus
https://github.com/raphlinus
https://levien.com/
https://fonts.google.com/
https://x.com/jpamental
https://github.com/jpamental
https://rwt.io/

Part | Chapter 5 : Media

Partl Chapter5

Media

Written by Tamas Piros, Ben Seymour, and Eric Portis

Reviewed by Nicolas Hoizey, Colin Bendell, Doug Sillars, and Navaneeth Krishna
Analyzed by Stefan Matei

Edited by Barry Pollard

Introduction

Today, we live in the world of the visual web, where media provides the soul for websites.
Websites use both images and videos to engage audiences by telling visual stories to inform
and to entertain. This chapter analyses how we use (or in some cases, misuse) images and
videos on the web.

Images

“A picture is worth a thousand words,” but byte-wise, they often cost an order of magnitude or

two more.

Images offer a most powerful pairing: instant communication, capable of triggering an innate
emotional response. However, they are also much heavier than text, and require considered
implementations to avoid bogging user experiences down. Let’s explore how well modern

2020 Web Almanac by HTTP Archive 161

Part | Chapter 5 : Media

browsers’ capabilities are being leveraged.

Responsive HTML markup forimages

While there are myriad approaches to embedding media using JavaScript, we were interested
in the ongoing uptake of varying forms of HTML markup. Several responsive images approaches
including the <picture> element,and srcset and sizes attributes have had growing
support since first introduced in 2014.

Srcset

The srcset attribute enables the user agent to attempt to determine the most appropriate
media asset to load from a candidate list.

For example:

<img srcset="images/example 3x.jpg 3x, images/example 2x.jpg 2x"

src="images/example.jpg" alt="...">

Around 26.5% of all pages now include srcset

The number of images presented to the user agents to choose from has direct implications for
two main performance factors:

248

1. Image breakpoints™ (to meet a performance budget)

2. Caching efficiencies

The fewer the number of image candidates, the greater the likelihood of the asset being cached,
and if a CDN is being used, the greater the likelihood of it being available on a client’s nearest
edge node. However the greater the difference in media dimensions, the more likely we are to
end up serving media which is less-suited to the device and context in question.

248. ht i ive-il 101-part-9-image-k

162 2020 Web Almanac by HTTP Archive

https://cloudfour.com/thinks/responsive-images-101-part-9-image-breakpoints/

Part | Chapter 5 : Media

Srcset: quantity ofimage candidates

Srcset number of candidates
Web Almanac 2020: Media
desktop [l mobile

100.00% 83.52%
75.00% 60.01%
172}
(]
2 50.00%
Q
=
g 25.00% 12.42% 1879,
e . o 0.53%
o
i |
= S S S S
6\67’&6 6\6'3@ &6’5\6 6\69\6 d\é'z’\a
o P N o o
20 50 0 &Y o
A N % AY S

Number of candidates

Figure 5.1. Srcset number of candidates.

In addition to the caching inefficiencies already mentioned, a greater number of dimensional
variants will typically increase both the complexity of the media pipeline or service in use, and

the required media storage.

When looking at this data, note that a few platforms (such as WordPress™) use automated

approaches which impact a large number of sites.

Srcset: descriptors

When providing the candidate list to the user agent, we have two mechanisms to annotate the

candidate images: x descriptors and w descriptors.

X descriptors describe the device pixel ratio of the specific resource. For example a 2x
descriptor would indicate that the specific image resource is of twice the dimensional size in
each axis (containing four times as many pixels) and is suitable for devices with a

window.devicePixelRatio of 2.Likewise,a 3x descriptor signifies nine times the

number of pixels, which of course can have considerable payload implications.

249. https://make.wordpress.org/core/2015/11/10; ive-images-i 4-4,

2020 Web Almanac by HTTP Archive 163

https://almanac.httparchive.org/static/images/2020/media/srcset-number-of-candidates.png
https://almanac.httparchive.org/static/images/2020/media/srcset-number-of-candidates.png
https://make.wordpress.org/core/2015/11/10/responsive-images-in-wordpress-4-4/

Part | Chapter 5 : Media

<img srcset="images/example 3x.jpg 3x, images/example 2x.jpg 2x"

src="images/example.jpg" alt="...">

w descriptors describe the candidate’s pixel width, along witha sizes attribute thatis used
to select the appropriate image.

<img srcset="images/example small.jpg 600w, images/
example medium.jpg 1400w, images/example large.jpg 2400w"
sizes="100vw"

src="images/example fallback.jpg" alt="...">

Both approaches enable the user agent to mathematically factor in the current device pixel
ratio when assessing the most appropriate image candidate.

Srcset descriptor usage
Web Almanac 2020: Media
desktop [l mobile

80.00%
64.15%

(72}
Q
g 60.00%
s
[7]
£
o 40.00%
(]
g 21.33%
5 20.00% 12.80%
: — .
o
(5]
2 - []

Pages use srcset Pages using srcset Instances of srcset Instances of srcset
descriptor x descriptor w descriptor x descriptor w

Type of description usage

Figure 5.2. Srcset descriptor usage.

In the early days of responsive images, some browsers only supported x descriptors, but

clearly w descriptors are currently by far the most favored.

While it can be common to choose image candidates which are spaced by dimension (rendering
every image at a set of pre-chosen widths, e.g. 720px, 1200px, and 1800px) there are also
approaches to give more linear payload steps (e.g. a series of resources which are 50kb in

164 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/srcset-descriptor-usage.png
https://almanac.httparchive.org/static/images/2020/media/srcset-descriptor-usage.png

Part | Chapter 5 : Media

difference). Tools like the Responsive Image Breakpoints Generator® can be useful in
facilitating this.

Sizes

Without the sizes attribute, the user agent will make its calculations based on a worst-case-
scenario assumption that the image occupies the full width of the viewport. With it, browsers
have more information about the image’s actual layout size and can make better choices.

For example:

<img sizes="(min-width: 640px) 50vw, 100vw"
srcset="images/example small.jpg 600w, images/
example medium.jpg 1400w, images/example large.jpg 2400w"

src="images/example fallback.jpg" alt="...">

Use of sizes in srcset
Web Almanac 2020: Media

Srcset with sizes [l Srcset without sizes

desktop 65.35% 34.65%
8
E
mobile 64.95% 35.05%
0% 25% 50% 75% 100%
Percent of srcset

Figure 5.3. Use of sizes in srcset.

For the 2020 data around 35% of sites using srcset did not also combine it with sizes .
Though the browser will happily fall backtoa sizes="100vw" default, leaving the attribute

251

off is technically incorrect™, and we regularly encounter instances where this oversight means

250. https://ww i ints.comy
251. ht i t.c /! ticle-update-dont-rely-on-default-si.

2020 Web Almanac by HTTP Archive 165

https://www.responsivebreakpoints.com/
https://almanac.httparchive.org/static/images/2020/media/srcset-sizes-usage.png
https://almanac.httparchive.org/static/images/2020/media/srcset-sizes-usage.png
https://alistapart.com/blog/post/article-update-dont-rely-on-default-sizes/

Part | Chapter 5 : Media

that the mathematics to determine the most appropriate image candidate are flawed, often
leading to unnecessarily-large images being requested.

Many people that we have discussed this with express that sizes is particularly tricky to
implement in a correct, resilient fashion, due to the need to ensure cross-resource alignment
between layout (as managed and determined by CSS) and responsive image markup (in HTML).

Picture

While srcset and sizes provide us with tooling to help provide browsers with images
which are dimensionally more suited for a given viewport, device and layout - the <picture>
element enables us to provide more sophisticated media strategies, including leveraging more
effective image formats and empowering us to explore “art direction”.

Use of <picture>
Web Almanac 2020: Media

Uses Picture [l Does not use Picture

desktop 19.30% 80.70%
8
é
mobile 18.54% 81.46%
0% 25% 50% 75% 100%
Pages

Figure 5.4. Use of <picture>.

Current uptake shows around 19% of pages being served using the <picture> element

serving at least one image.

Picture: format switching

While there are some services and image CDNs which can provide auto-format switching from
asingle image URL using logic on the backend, we can also achieve similar behaviors using
markup alone, with the <picture> element.

166 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/use-of-picture.png
https://almanac.httparchive.org/static/images/2020/media/use-of-picture.png

Part | Chapter 5 : Media

<picture>
<source type="image/webp" srcset="images/example.webp">

</picture>

Breaking this down into the number of formats offered:

<picture> number of formats
Web Almanac 2020: Media

desktop [l mobile

80.00% 68.03%

60.00%
0
[}
(=]
[0}
Q.
5 40.00%
o 23.78%
()]
8
S 0,
§ 20.00% 6.97%
5 1.22%

0.00% | |
A s & 5&
<2 @ @ 2
A oo e o

Number of formats

Figure 5.5. <picture> number of formats.

Of pages using <picture> for format-switching, around 68% are offering a single type
variation, in addition to the which acts as the default.

2020 Web Almanac by HTTP Archive 167

https://almanac.httparchive.org/static/images/2020/media/picture-number-of-formats.png
https://almanac.httparchive.org/static/images/2020/media/picture-number-of-formats.png

Part | Chapter 5 : Media

<picture> format usage by type
Web Almanac 2020: Media
desktop [l mobile

100.00% 84.64%
A 75.00%
4]
(=]
8
S 50.00%
Q
g
5 0
% 25.00% 17.46%
> o,
. 483% o53% 0.00%
0.00% _—
\‘\\6‘0? ?“G) ©©) Pﬂ\?
Format type

Figure 5.6. Picture format usage by type.

We see that WebP is the dominant usage across <source> elements, followed by PNG, and
that and JPGis only 4.83% of <picture> usage.

Note our crawler crawls as Chrome which supports WebP, but if using another browser which does not
support this then you will see different results.

Here is an example of the markup syntax that could be used to offer multiple format variants:

<picture>
<source type="image/avif" srcset="images/example.avif">
<source type="image/webp" srcset="images/example.webp">
<source type="image/jp2" srcset="images/example.jp2">
<source type="image/vnd.ms-photo" srcset="images/example.jxr">

</picture>

The user agent will effectively select the first one that it has a positive match on, and hence the
ordering here is important.

Of those pages using <picture> for format switching, 83% offer WebP as one of the format
variants, which in part relates to its growing browser support.

168 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/picture-format-usage-by-type.png
https://almanac.httparchive.org/static/images/2020/media/picture-format-usage-by-type.png

Part | Chapter 5 : Media

Format support across browsers is a movable feast: WebP has now got much broader support.

o WebP: 90% coverage™ (Edge, Firefox, Chrome, Opera, Android)
e JPEG 2000: 18.5% coverage™ (Safari)
e JPEGXR: 1.7% coverage™ (IE)

e AVIF: 25% coverage™ (Chrome, Opera)

When constructing a set of fallback formats, authors must consider features, in addition to
compression performance. For example, if an image contains transparency, a good “lowest-
common denominator” to supply inthe img src would be PNG. Then, one or more

<source> elements containing next-generation formats that also support transparency - like
WebP, JPEG 2000 and AVIF - could be used on top of that.

Similarly, consider stacking Animated WebPs or muted, looped, autoplaying MP4s on top of
Animated GIFs (though mixing videos and images will have implications for the markup

approach, and media processing needs).

There are three aspects to consider when implementing format-switching:

e The browser format support landscape

e Asite’s media pipeline: the processes it uses to create the needed media in a variety

of formats

¢ Implementing the markup to tell browsers which formats are on offer, and when to
select each

Several Dynamic Media Services and Image CDNs can greatly simplify this by automating it and
endeavoring to track and keep in sync with the ever-changing browser format support

landscape.

Note: though AVIF has been supported in Chrome since version 85 (released late August 2020), the
data for this Almanac is predominantly from prior to this time. However running an ad hoc query on
more recent data from early November 2020 shows tens of thousands of AVIF requests.

Picture: media art direction

The media art direction capabilities offered by the <picture> element enable us to provide

252. https://caniuse.com/webp
253. https://caniuse.com/jpeg2000
254. https://caniuse.com/jpegxr
255, https://caniuse.com/avif

2020 Web Almanac by HTTP Archive 169

https://caniuse.com/webp
https://caniuse.com/jpeg2000
https://caniuse.com/jpegxr
https://caniuse.com/avif

Part | Chapter 5 : Media

the kind of sophisticated viewport-dependent media manipulation that we have enjoyed when
designing type and layouts for some time.

Consider how poorly landscape-oriented media with very wide-and-short aspect ratios (such as
banners) works when squeezed into narrow, portrait-oriented mobile layouts. Adapting the

crop or content of images based on media queries, is, in our opinion, an underutilized capability.

In this example, we are changing out the aspect ratio of the served media, from square (1:1) to
4:3 and eventually 16:9 depending on the viewport width, endeavoring to make the best use of
the available space for our media:

<picture>
<source media="(max-width: 780px)"
srcset="image/example square.jpg 1x, image/
example square 2x.jpg 2x">
<source media="(max-width: 1400px)"
srcset="image/example 4 3 aspect.jpg 1x, image/
example 4 3 aspect 2x.jpg 2x">
<source srcset="image/example 16 9 aspect.jpg 1lx, image/
example 16 9 aspect 2x.jpg 2x">

</picture>

Picture: orientation switching

While the data shows that only a little under 1% of pages using <picture> make use of
orientation, this feels like an area that warrants further exploration from website designers and

developers.

170 2020 Web Almanac by HTTP Archive

Part | Chapter 5 : Media

Use of <picture> with orientation

Web Almanac 2020: Media
desktop [l mobile

1.50%
0.91%

2 1.00%
()]
8
= 0.60%
k<]
@
g 0.50%
o

0.00%

Pages Occurances

Type

Figure 5.7. <picture> usage of orientation.

Mobile devices have small, constricted viewports, and are easy to turn from portrait to

landscape mode in the hand. There is some interesting, underutilized potential for using the

orientation media query.

Example syntax:

<picture>

<source srcset="images/example wide.jpg"

media="(min-width: 960px) and (orientation:

<source srcset="images/example tall.jpg"

media=" (min-width: 960px) and (orientation:

</picture>

Effective leveraging of image formats

landscape) ">

portrait)">

Using the appropriate image format and the capabilities that format offers is critical to make

effective use of media on web pages.

2020 Web Almanac by HTTP Archive

7

https://almanac.httparchive.org/static/images/2020/media/picture-usage-of-orientation.png
https://almanac.httparchive.org/static/images/2020/media/picture-usage-of-orientation.png

Part | Chapter 5 : Media

MIME types vs extensions

We observed a high distribution of extensions and various spellings of the same extension (e.g.,

jpg vs JPG vs jpeg vs JPEG).Insome cases the MIME type is also specified incorrectly. For
example - image/jpeg is the correct and recognized MIME type for JPEG images. However
we can see that 0.02% of all the pages that use JPEG have specified the incorrect MIME type.
Furthermore we can see that an extension of pnj was used 28,420 times (likely to be a typo)
and its MIME time was set to image/jpeg .

Image usage by extension
Web Almanac 2020: Media
desktop [l mobile

50.00%
40.26%
40.00%
8 26.90%
2 30.00%
S 17.44%
ch 20.00%
5]
& o 6.59%
10.00% 3.13% 1.83% 1.36%
0.00% . || - i
irg png gif svg ico jpeg
Extension

Figure 5.8. Image usage by extension.

We have seen further inconsistencies between extensions and MIME types - for example

.jpg s delivered with a MIME type of image/webp , however it is likely that some of these are
natural artifacts caused by Image CDN delivery services with on-the-fly transformation and
optimization capabilities.

Progressive JPEGs

How common are progressive JPEGs™? WebPageTest gives each page a “score,” which adds up
all of the JPEG bytes that were loaded from progressively-encoded JPEGs and divides it by the
total number of JPEG bytes that could have been progressively encoded. The majority (57%) of
pages served less than 25% of their JPEG-bytes, progressively. This represents a large
opportunity for no-downsides compression savings, that’s yet to be taken despite years of

256. ps:) hil ine.com/2018/02/pi ive-i loadir perceived-performance/#back-to-basis-progressive-jpegs

172 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/image-usage-by-extension.png
https://almanac.httparchive.org/static/images/2020/media/image-usage-by-extension.png
https://www.smashingmagazine.com/2018/02/progressive-image-loading-user-perceived-performance/#back-to-basis-progressive-jpegs

Part | Chapter 5 : Media

progressive JPEGs being a best practice and modern encoders like MozJPEG encoding

progressively by default.

Progressive JPEG score
Web Almanac 2020: Media
desktop [l mobile

80.00%
57.77%

60.00%
w
S
g
5 40.00%
o 0,
€ 2000% 13.72% . 15.19%

7.53% 5.79%
0.00% . | (| L
<0 0-25 25-50 50-75 75-100
Score
Figure 5.9. Progressive JPEG score.
Microbrowsers

Let us turn now to the topic of microbrowsers

257

. Also known as “link unfurlers” and “link

expanders,” these are the user agents that request web pages and grab bits and pieces from

them to assemble rich previews when links are shared in messaging or on social media. The

lingua franca of microbrowsers is Facebook’s Open Graph protocol™, so we looked at what

percentage of web pages are including images and video specifically targeted towards

microbrowsers in Open Graph <meta> tags.

257. https://24ways.org/2019/microbrowsers-are-everywhere/

258. https://ogp.me

2020 Web Almanac by HTTP Archive 173

https://almanac.httparchive.org/static/images/2020/media/progressive-jpeg-score.png
https://almanac.httparchive.org/static/images/2020/media/progressive-jpeg-score.png
https://24ways.org/2019/microbrowsers-are-everywhere/
https://ogp.me/

Part | Chapter 5 : Media

Open Graph image and video usage
Web Almanac 2020: Media
desktop [l mobile

40.00%
32.72%

30.00%
w
o
(=]
@
Q

% 20.00%
€
@
2
(5]

o 10.00%

0.10% 0.10%
0.00%
Meta og image Meta og video Meta og image and video
Format

Figure 5.10. Open Graph image and video usage.

A third of web pages include images, in Open Graph tags, for microbrowsers. But only around
0.1 percent of pages include microbrowser-specific videos; just about every page that included
avideo, also included animage.

A third of sampled web pages seems very healthy; the power of relational, word-of-mouth
marketing combined with microbrowser-tailored rich previews is clearly worth investing in.

Given that video content is expensive to produce and much less common on the web than
images, we understand the comparatively low usage. But the fact that videos are often playable
and even autoplay-able from within the link previews themselves, without requiring atripto a
full-on browser, means that this is a big opportunity for boosting engagement.

174 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/open-graph-image-and-video-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-image-and-video-usage.png

Part | Chapter 5 : Media

Open Graph image type usage
Web Almanac 2020: Media

50.51% desktop [l mobile
50.00% 43.82%
40.00%
8
2 30.00%
Q
k]
g 20.00%
5
o
10.00% o o
1.60% 1.78% 0.66% 0.31% 0.36% 0.28% 0.23%
0.00% —
glf jpeg svg pnj png:150 ico webp
Image type
Figure 5.11. Open Graph image type usage.
Open Graph video type usage
Web Almanac 2020: Media
desktop [l mobile
100.00%
78.57%
75.00%
0
S
g
5 50.00%
3
S 200% 10.86%
2.83%
oo I
mp4 swf webm

Type

Figure 5.12. Open Graph video type usage.

The Open Graph protocol only allows for one image or video URL to be included; there is none
of the context-adaptive flexibility offered by <picture> and srcset .So, authors tend to be
rather conservative when picking formats to send to microbrowsers. Fully half of all
microbrowser-specificimages are JPEGs; 45 percent are PNGs; a hair under 2 percent are GIFs.
WebPs only account for 0.2% of images for microbrowsers.

2020 Web Almanac by HTTP Archive 175

https://almanac.httparchive.org/static/images/2020/media/open-graph-image-type-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-image-type-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-video-type-usage.png
https://almanac.httparchive.org/static/images/2020/media/open-graph-video-type-usage.png

Part | Chapter 5 : Media

Likewise, on the video front, the vast majority of resources are sent in the lowest-common-
denominator format: MP4. We are mystified as to why the second most popular format is the
now-depreciated™ SWF, and curious whether these are playable in any microbrowser.

Usage of rel=preconnect

Media assets can be stored either locally, or on an Image CDN. The way assets are optimized,
transformed and delivered to the end user highly depends on the appropriate technique used.
When including images from another domain, the rel=preconnect attribute can be used on
a <link> element to give browsers an opportunity to initiate DNS connections before they
are needed. While this is a relatively cheap operation, there could be situations when the
additional CPU time spent establishing such connections delays other work.

8.19%

Figure 5.13. Mobile pages using preconnect.

Analyzing the markup, on desktop we see 7.83% of pages using this, and on mobile it is 8.19%.
The Resource Hints chapter used a slightly different methodology by analyzing the DOM and
got similar, but slightly larger, numbers at 8.15% and 8.65% respectively.

Usage of data: URLs

Using data URLs (formerly known as data URIs) is a technique that allows developers to embed
a baseé4-encoded image directly in HTML. This ensures that an image will be fully loaded by
the time that the HTML has been parsed into a DOM tree, and virtually guarantees that the
image will be available for the first paint. However, because they don’'t compress over the wire
as well as binaries, block other—possibly more important resources—from loading, and
complicate caching, so base-64'd images are something of an anti-pattern™.

9.10%

Figure 5.14. Mobile pages using data URIs.

259. https://blog.adobe.com/en/publish/2017/07/25/adobe-flash-update.html#gs.my93m2
0. ¥ g .com/2020/the-dangers-of-data-uri:

176 2020 Web Almanac by HTTP Archive

https://blog.adobe.com/en/publish/2017/07/25/adobe-flash-update.html#gs.my93m2
https://calendar.perfplanet.com/2020/the-dangers-of-data-uris/

Part | Chapter 5 : Media

The usage of these doesn’t seem to be that widespread: 9% of pages utilize data URLs for
displaying images. However, it should be noted that we only investigated HTML-embedded
base64 encoded image src s and did not include CSS-embedded base-64-encoded images for
background-images or the like.

SEO & Accessibility

Associating descriptive text with images not only helps accessibility for those who can’t view
the images and utilize screen-readers, but it is also being used by various computer vision
algorithms to understand the subject matter of an image. Descriptive text should be meaningful
in the context of the page and relevant to the image it is describing. More information on these
topics can be found in the SEO and Accessibility chapters.

Usage of alt text

The alt attribute for images is used to provide a description of the image. It is announced by
screen-readers and is also shown in visual browsers when the image doesn't load.

Image alt usage by page
Web Almanac 2020: Media

deskto| mobile
96.04% » B

100.00%
82.12%
75.00% 60.55%
[
g 51.02%
3
5 50.00%
t
[
5
@
o 25.00%
0.00%
Image present Missing alt Blank alt Alt present
Alt category

Figure 5.15. Image alt usage by page.

2020 Web Almanac by HTTP Archive 177

https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-page.png
https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-page.png

Part | Chapter 5 : Media

Image alt usage by image
Web Almanac 2020: Media
desktop [l mobile

60.0% 52.3%
2 40.0%
&
8 26.2%
5 21.5%
f=
@
g 20.0%
o

0.0%

Missing alt Blank alt Alt present

Percent of images

Figure 5.16. Image alt usage by image.

Around 96% of all the pages processed had an element - 21% of these images were
missingan alt attribute. 52% of the images had an alt attribute, however 26% of these
were left blank. Put simply: only around a quarter of images on the web have a non-blank alt
attribute; presumably even less than that have alt text that’s usefully descriptive.

Figure & Figcaption

HTML5 added various new semantic elements to the language. One such element is
<figure>, which can optionally containa <figcaption> element as its child. Textual
descriptions contained within <figcaption> s are semantically grouped with the other

content of the <figure>.

178 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-image.png
https://almanac.httparchive.org/static/images/2020/media/image-alt-usage-by-image.png

Part | Chapter 5 : Media

Figure and Figcaption usage by page
Web Almanac 2020: Media
desktop [l mobile

20.00%

15.00% 0,
., 12.16%
)
[=2]
©
Q.
% 10.00%
S
(7]
Q
@
o 5.00%

1.13%
0.00% [
Figure Figcaption

Type

Figure 5.17. Figure and Figcaption usage by page.
We can see that roughly 12% of the pages on both desktop and mobile use the <figure>

element, however only roughly 1% use <figcaption> toadd adescription.

Videos

If “a picture is worth a thousand words,” a minute of 30fps video must be worth 1.8 million!

Video is one of the most powerful ways to engage with an audience today, however adding
video to a site is no small undertaking. There are a maze of formats and codecs to navigate, and
myriad implementation details to consider. But the impact of video - both the visual impact,
and the performance impact - cannot be overstated.

The <video> element

The <video> element forms the core of video delivery on the web and is used either on its
own or in conjunction with JavaScript players which progressively enhance it to deliver video.

sources (or not), and total usage

There are two ways to embed a video resource using the <video> element. You can either

2020 Web Almanac by HTTP Archive 179

https://almanac.httparchive.org/static/images/2020/media/figure-and-figcaption-usage-by-page.png
https://almanac.httparchive.org/static/images/2020/media/figure-and-figcaption-usage-by-page.png

Part | Chapter 5 : Media

stick a single resource URL into the src attribute on the element itself or give it any number of
child <source> elements, which the browser peruses until it finds a source it thinks it can
load. Our first query looks at how often we see each of these patterns across all sampled pages.

Video usage of Src versus Source
Web Almanac 2020: Media
desktop [l mobile

2.00%

1.50%
8
g 0.99%
(=%
s 1.00%
=
g 0.49%
@
o 0.50%

Src Source

Method

Figure 5.18. Video usage of Src versus Source.

Twice as many <video> shave <source> children,vsa src attribute. This indicates that
authors want the ability to send different resources to different end users, depending on their
context, rather than sending a single lowest-common-denominator resource to everyone (or,
alternately, giving some portion of their audience a worse, or broken, experience).

Also, interestingly, we can see that across all pages only a percent or two contain <video>

elements at all. It is far less common than !

JavaScript players

We looked for the presence of a few common players (hls.js, video.js, Shaka Player, JW Player,
Brightcove Player, and Flowplayer). Pages with these particular players are less than half as
common as pages that use the native <video> element.

180 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/video-usage-of-src-versus-source.png
https://almanac.httparchive.org/static/images/2020/media/video-usage-of-src-versus-source.png

Part | Chapter 5 : Media

Video element versus JavaScript player
Web Almanac 2020: Media

desktop [l mobile

100.00%
74.77%
75.00%
[}
[
j=2]
[}
[=%
5 50.00%
5 30.57%
5
o
25.00%
5.34%
0.00% [
Video Element JavaScript Video Player Both

Figure 5.19. Video element versus JavaScript player.

The analysis is complicated a bit by the fact that many players - such as video.js - enhance in-
source <video> elements. Only 5-6% of the pages that used the searched-for players also
included a <video> element, but evidence of this pattern is actually more visible when we
look at the values of type attributes, within <video> and <source> elements.

2020 Web Almanac by HTTP Archive 181

https://almanac.httparchive.org/static/images/2020/media/video-element-versus-javascript-player.png
https://almanac.httparchive.org/static/images/2020/media/video-element-versus-javascript-player.png

Part | Chapter 5 : Media

Type attributes

Video source types
Web Almanac 2020: Media

desktop [l mobile

80.00% 64.08%

60.00%
8
S 40.00%
g‘ 19.68%
‘;q:: 20.00% 10.08% 4 74%
g I ' 0.51% 0.37% 0.12% 0.09%
(o
0.00% . -
» . & N o o 3
« S & SE & SR & «®
& & R & & & o ¢
& & & & & + & ®

Source type

Figure 5.20. Video source types.

Unsurprisingly, by far the most common type value is video/mp4 . But the second most
common - making up 15% of all desktop type s,and 20% of all type s sent to the mobile
crawler,is video/youtube - whichisnot aregistered MIME type at all. Rather it is a special
value that several players (including WordPress) use when embedding YouTube videos. A few
notches down the list, we see a similar pattern, for Vimeo embeds.

As for the legitimate MIME types; they capture container formats; MP4 and WebM are the only
two in anything we might call common use. It would be interesting to know which codecs are
being used within these containers, and how much traction next-gen codecs like VP8, HVEC,
and AV1 have gotten. But such analysis is, unfortunately, outside the scope of this article.

182 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/video-source-types.png
https://almanac.httparchive.org/static/images/2020/media/video-source-types.png

Part | Chapter 5 : Media

Video preload
Video preload values
Web Almanac 2020: Media
desktop [l mobile

50%

40% 33% 33%
4 27%
P 30%
[=%
k]
S 20%
(5]
3
o

10% 5%

0% |

none auto metadata not set

Preload value

Figure 5.21. Video preload values.

The preload attribute indicates whether a video should be downloaded, and it can have three

values: none, metadata, auto (notethat if left empty, the auto valueis assumed). We can

see that 4.81% of pages have <video> elements, and 45.37% of these have the preload
attribute. The numbers on mobile are slightly different, with only 3.59% of the pages having
<video> elementsand 43.38% of these having the preload attribute.

2020 Web Almanac by HTTP Archive

183

https://almanac.httparchive.org/static/images/2020/media/video-preload-values.png
https://almanac.httparchive.org/static/images/2020/media/video-preload-values.png

Part | Chapter 5 : Media

Autoplay and Muted

Video autoplay and muted usage
Web Almanac 2020: Media

desktop [l mobile

80.00%
o [

0.00% 53.86% 53.41%
@ 45.99%
S
@
Q
5 40.00%
€
@
<
(5]
0 20.00%

0.00%

Video Autoplay Video Muted Both

Autoplay and muted attributes

Figure 5.22. Video autoplay and muted usage.

Looking at additional information about videos, we can see that 57.22% of the <video>
elements on desktop have the autoplay attribute, 56.36% of pages witha <video> element
on desktop utilize the muted attribute and last but not least 48.74% of pages use both

autoplay and muted together, on desktop. The numbers are similar for mobile, where
53.86% have autoplay,53.41% have muted and 45.99% include both attributes.

Conclusion

The web is an amazing place to tell a visual story. During our research we could see that the
web is truly utilizing a lot of elements of media. This diversity is also shown in the number of
ways media is represented on the web today. Most basic features for displaying media are being
actively used, however using modern browsers we could do a lot more. Some of the advanced
media features that are used today are amazing, however sometimes they are used incorrectly
or in the wrong context. We would like to encourage everyone to go a level deeper: use all the
features and capabilities of the modern web to bring more amazing visual experiences to users.

184 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/media/video-autoplay-and-muted-usage.png
https://almanac.httparchive.org/static/images/2020/media/video-autoplay-and-muted-usage.png

Part | Chapter 5 : Media

Authors

Tamas Piros
X @tpiros) tpiros @ https://tamas.io

Tamas Piros is a Developer Experience Engineer at Cloudinary™’, Google
Developer Expert and Technical Instructor running Full Stack Training™.

Q Ben Seymour

X @bseymour) bseymour [benseymour ® https://benseymour.com
Ben Seymour is a Dynamic Media & Content Specialist with Cloudinary™, author

of Practical Responsive Images™ and co-founder of Storyus™ and Haktive™.

Eric Portis
X @etportis W @ericportiscom) eeeps @ https://ericportis.com

Eric Portis is a Web Platform Advocate at Cloudinary™.

261.
262.
263.
264.
265.
266.
267.

https://cloudinary.com/
https://fullstacktraining.com
https://cloudinary.com/
http://responsiveimag.es/
https://storyus.life/
https://haktive.com/
https://cloudinary.com/

2020 Web Almanac by HTTP Archive 185

https://x.com/tpiros
https://github.com/tpiros
https://tamas.io/
https://cloudinary.com/
https://fullstacktraining.com/
https://x.com/bseymour
https://github.com/bseymour
https://www.linkedin.com/in/benseymour/
https://benseymour.com/
https://cloudinary.com/
http://responsiveimag.es/
https://storyus.life/
https://haktive.com/
https://x.com/etportis
https://bsky.app/profile/ericportis.com
https://github.com/eeeps
https://ericportis.com/
https://cloudinary.com/

186 2020 Web Almanac by HTTP Archive

Part | Chapter 6 : Third Parties

Partl Chapter 6

Third Parties

NS
. — AAA 33

Written by Simon Hearne

Reviewed by Julia Yang and Shane Exterkamp
Analyzed by Max Ostapenko and Paul Calvano
Edited by Barry Pollard

Introduction

Third-party content is a critical component of most websites today. It powers everything:
analytics, live chat, advertising, video sharing and more. Third-party content provides value by
taking the heavy lifting off of site owners and allows them to focus on their core competencies.

Many think of third-party content as being JavaScript-based, but the data shows that this is
only true for 22% of requests. Third-party content comes in all forms, from images (37%) to
audio (0.1%).

In this chapter we will review the prevalence of third-party content and how this has changed
since 2019. We will also review: the impact of third-party content on page weight (a good proxy
for overall performance impact), scripts that load early in the page lifecycle, the impact of third-
party content on browser CPU time, and how open third-parties are with their performance
data.

2020 Web Almanac by HTTP Archive 187

Part | Chapter 6 : Third Parties

Definitions

Before jumping into the data we should define the terminology used in this chapter.

“Third Party”

A third-party resource is an entity outside the primary site-user relationship. It involves the
aspects of the site not directly within the control of the site owner but present, with their
approval. For example, the Google Analytics script is a common third-party resource.

We consider third-party resources as those:

o Hosted on a shared and public origin
e Widely used by a variety of sites

e Uninfluenced by an individual site owner

To match these goals as closely as possible, the formal definition used throughout this chapter
for third-party resources is: a resource that originates from a domain whose resources can be
found on at least 50 unique pages in the HTTP Archive dataset.

Note that using these definitions, third-party content served from a first-party domain is
counted as a first-party content. For example: self-hosting Google Fonts or bootstrap.css is
counted as first-party content.

Similarly, first-party content served from a third-party domain is counted as third-party
content. An associated example: First-party images served over a CDN on a third-party domain
are considered third-party content.

Provider categories

This chapter divides third-party providers into different categories. A brief description is
included with each of the categories. The mapping of domain to category can be found in the
third-party-web repository™.

e Ad-display and measurement of advertisements

e Analytics - tracking site visitor behavior

268. https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d7 15c07e85fb0f8ec/data/entities.json5

188 2020 Web Almanac by HTTP Archive

https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5

Part | Chapter 6 : Third Parties

e CDN - providers that host public shared utilities or private content of their users
e Content - providers that facilitate publishers and host syndicated content

e Customer Success - support and customer relationship management functionality
e Hosting - providers that host the arbitrary content of their users

e Marketing - sales, lead generation, and email marketing functionality

e Social - social networks and their affiliated integrations

o TagManager - provider whose sole role is to manage the inclusion of other third

parties
e Utility - code that aids the development objectives of the site owner
o Video - providers that host the arbitrary video content of their users

e Other - uncategorized or non-conforming activity

Note on CDNs: The CDN category here includes providers that provide resources on public CDN
domains (e.g. bootstrapcdn.com, cdnjs.cloudflare.com, etc.) and does not include resources that are
simply served over a CDN. i.e. putting Cloudflare in front of a page would not influence its first-party

designation according to our criteria.

Caveats

o Alldata presented here is based on a non-interactive, cold load. These values could
start to look quite different after user interaction.

e The pages are tested from servers in the US with no cookies set, so third-parties
requested after opt-in are not included. This will especially affect pages hosted and
predominantly served to countries in scope for the General Data Protection

Regulation™, or other similar legislation.

e Only the home pages are tested. Other pages may having difference third-party
requirements.

e Roughly 84% of all third-party domains by request volume have been identified and
categorized. The remaining 16% fall into the “Other” category.

Learn more about our methodology.

269. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

2020 Web Almanac by HTTP Archive 189

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

Part | Chapter 6 : Third Parties

Prevalence

A good starting point for this analysis is to confirm the statement that third-party contentis a
critical component of most websites today. How many websites use third-party content, and
how many third-parties do they use?

Pages with third-party content
Web Almanac 2020: Third Parties
mobile [l desktop

100.00%
X 93.60% [:EE15 94.10% [CER:T47
©
S 75.00%
3
1]
L5
(5}
= 50.00%
o
>
[7]
“6 0
5 25.00%
Qo
€
=
z
0.00%
2019 2020
Percentile

Figure 6.1. Pages with third-party content.

These prevalence numbers show a slight increase on the 2019 results™: 93.87% of pages in the
desktop crawl had at least one third-party request, the number was slightly higher at 94.10% of
pages in the mobile crawl. A brief look into the small number of pages with no third-party
content revealed that many were adult sites, some were government domains and some were
basic landing / holding pages with little content. It is fair to say that the vast majority of pages
have at least one third-party.

The chart below shows the distribution of pages by third-party count. The 10th percentile page
has two third-party requests while the median page has 24. Over 10% of pages have more than
100 third-party requests.

270. https://almanac.httparchive.org/en/2019/third-parties

190 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/pages-with-thirdparties.png
https://almanac.httparchive.org/static/images/2020/third-parties/pages-with-thirdparties.png
https://almanac.httparchive.org/en/2019/third-parties

Part | Chapter 6 : Third Parties

Distribution of third-party requests
Web Almanac 2020: Third Parties
mobile @ desktop

125
104
100
)
8
3 75
4 53
£
o 50
i 24
F 25 9
2
0
10 25 50 75 90
Percentile
Figure 6.2. Distribution of third-party requests.
Content-types

We can break down third-party requests by their content type. This is the reported content-
type™ of the resources delivered from third-party domains.

271. https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type

2020 Web Almanac by HTTP Archive

191

https://almanac.httparchive.org/static/images/2020/third-parties/distribution-of-request-count.png
https://almanac.httparchive.org/static/images/2020/third-parties/distribution-of-request-count.png
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type

Part | Chapter 6 : Third Parties

Third-party content by type
Web Almanac 2020: Third Parties

image [l script other [l html [css [font [text @ xml video
1 audio

desktop 37.1% 21.9% 16.1% 15.4%
mobile 38.5% 21.5% 16.4% LAV

0% 25% 50% 75% 100%
Percent of requests

Figure 6.3. Third-party content by type.

The results show that the major contributors of third-party content are images (38%) and
JavaScript (22%), with the next largest contributor being unknown (16%). Unknown is a subset
of non-categorized groups such as text/plain as well as responses without a content-type
header.

This shows a shift when compared to 2019 relative image content has increased from 33% to
38%, whilst JavaScript content has decreased significantly from 32% to 22%. This reduction is
likely due to increased adherence to cookie and data protection regulations, reducing third-
party execution until after explicit user opt-in which is out of scope for HTTP Archive test runs.

Third-party domains

When we dig further into domains serving third-party content we see that Google Fonts is by
far the most common. It is present on more than 7.5% of mobile pages tested. While fonts only
account for around 3% of third-party content, almost all of these are delivered by the Google

273

Fonts service. If your page uses Google Fonts, make sure to follow best practices™ to ensure the

best possible user experience.

272. https://almanac.httparchive.org/en/2019/third-parties#resource-types
izardry.com/2020/05/the-fastest-google-font:

192 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/thirdparty-by-content-types.png
https://almanac.httparchive.org/static/images/2020/third-parties/thirdparty-by-content-types.png
https://almanac.httparchive.org/en/2019/third-parties#resource-types
https://csswizardry.com/2020/05/the-fastest-google-fonts/

Part | Chapter 6 : Third Parties

Top domains by prevalence
Web Almanac 2020: Third Parties

fonts.googleapis.com
* rubiconproject.com
mc.yandex.ru

* pubmatic.com
*.adnxs.com

* digicert.com
*.casalemedia.com
*.amazon.com
adservice.google.com
*.adobedtm.com
*.vine.co
*.bluelithium.com
*.mathads.com
*.newrelic.com

* bidswitch.net
ajax.googleapis.com
* bkrtx.com
*.chimpstatic.com
*.sharethis.com
*.addthis.com
*.yadro.ru
*.burstnet.com
*.scorecardresearch.com
*.eyeota.net

* lijit.com

0.00% 2.50% 5.00% 7.50%

Figure 6.4. Top domains by prevalence.

The next four most common domains are all advertising providers. They may not be requested
directly by the page but through a complex chain of redirects initiated by another advertising
network.

The sixth most common domainis digicert.com.Callsto digicert.com are generally
OCSP revocation checks due to TLS certificates not having OCSP stapling enabled, or the use of
Extended Validation (EV) certificates which prevent pinning of intermediate certificates. This
number is exaggerated in HTTP Archive due to all page loads being effectively first-time visitors
- OCSP responses are generally cached and valid for seven days in real-world browsing. See this

274

blog post™ to read more on this issue.

275

Further down the list at 2.43%is ajax.googleapis.com, Google's Hosted Libraries project™.
Whilst loading a library such as jQuery from a hosted service is easy, the additional cost of a
connection to a third-party domain may have a negative impact on performance. It is best to
host all critical JavaScript and CSS on the root domain, if possible. There is also now no cache

276

benefit to using a shared CDN resource, as all major browsers partition caches by page™. Harry

277

Roberts has written a detailed blog post on how to host your own static assets™.

274. https://simonhearne.com/2020/drop-ev-certs/
H devel Alibrari

275. ht 00gl p
276. https://devel 00gle.c P '2020/10/http-cache-partitioning
277. hti izardry.com/2019/05/self-host-y tatic-assets/

2020 Web Almanac by HTTP Archive 193

https://almanac.httparchive.org/static/images/2020/third-parties/top-domains-by-prevalence.png
https://almanac.httparchive.org/static/images/2020/third-parties/top-domains-by-prevalence.png
https://simonhearne.com/2020/drop-ev-certs/
https://simonhearne.com/2020/drop-ev-certs/
https://developers.google.com/speed/libraries
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://csswizardry.com/2019/05/self-host-your-static-assets/

Part | Chapter 6 : Third Parties

Page weight impact

Third-parties can have a significant impact on the weight of a page, measured as the number of
bytes downloaded by the browser. The Page Weight chapter explores this in more detail, here
we focus on the third-parties that have the greatest impact on page weight.

Heaviest third-parties

We can extract the largest third-parties by the median page weight impact, i.e. how many bytes
they bring to the pages they are on. The results are interesting as this does not take into
account how popular the third-parties are, just their impact in bytes.

Third-party size contribution by host
Web Almanac 2020: Third Parties

www.trailercentral.com
inventory.vidazoo.com
img.imageimg.net
videos.hibustudio.com
di2.irmoviedl.ir
www.eschoolview.com
all.prod.nissan.eu
cdn5.zarad.net

s0.rbk.ru

www.Kkarirpad.com
static-hhru.webim.ru
dw4i9za0jmiyk.cloudfront.net
cdn.teamskeetimages.com
dkthirmcewzdcx.cloudfront.net
b.cdsbnrs.com
b.dombnrs.com
house-cloudfront.us-east-1.prod....
servidor2.constructorsitiosweb.com
Jpg.ynhygs.com
player.dacast.com
contentservice.mc.reyrey.net

Domain

0 1,000 2,000 3,000
Size (kB)

Figure 6.5. Third-party size contribution by host.

The top contributors of page weight are generally media content providers, such as image and
video hosting. Vidazoo, for example, results in a median page weight impact of about 2.5MB.
The inventory.vidazoo.com domain provides video hosting, so a median page with this
third-party has an extra 2.5MB of media content!

A simple method to reduce this impact is to defer video loading until a user interacts with the
page, so that the impact is reduced for those visitors that never consume the video.

We can take this analysis further to produce a distribution of total page size (in bytes
downloaded for all resources) by third-party category presence. This chart shows that the
presence of most third-party categories does not have a noticeable impact on total page size:

194 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-host.png
https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-host.png

Part | Chapter 6 : Third Parties

this would be visible as a divergence in the plots. A notable exception to this is Advertising (in
black) which shows a very small relationship with page size, indicating that advertisement

requests do not add significant weight to pages. This is likely because many of these requests
are small redirects, the median is only 420 bytes. We see similar low impact for tag managers,

and analytics.

On the other end of the spectrum, the categories CDN, Content and Hosting all represent
strong relationship with total page weight. This indicates that sites using hosted services are
generally larger in page weight.

Page size distributions by third-party category
Web Almanac 2020: Third Parties

1000000
‘/ @ advertising
100000 &
analytics
7#:—“"” @ cdn
10000 e gl

—~ ~,-—~""”

) @ content

I X

N 1000 customer-success

77}

) hosting

=3

o 100 marketing
other

10 social
tag-manager
! ki
0 20 40 60 80 unknown
Percentile 2 more
Figure 6.6. Page size distributions by third-party category.
Cacheability

Some third-party responses should always be cached. Media such as images and videos served
by a third-party, or JavaScript libraries are good candidates. On the other hand, tracking pixels
and analytics beacons should never be cached. The results show that overall two-thirds of
third-party requests are served with a valid caching header such as Cache-Control.

2020 Web Almanac by HTTP Archive 195

https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-category.png
https://almanac.httparchive.org/static/images/2020/third-parties/page-size-by-category.png

Part | Chapter 6 : Third Parties

Third-party requests cached by content type
Web Almanac 2020: Third Parties

mobile [l desktop

96%
100% 88% 86%
9 o,

) 77% 75% 73%
3”:, 75% 62% 65%
g
o
o
£ 50% 37%
3
G
- 0
2 s 18%
<4
[
. L

0%

audio css font html image other script text video xml

Content type

Figure 6.7. Third-party requests cached by content type.

Breaking down by response type confirms our assumptions: xml and text responses (as
commonly delivered by tracking pixels / analytics beacons) are less likely to be cacheable.
Surprisingly, less than two-thirds of images served by third-parties are cacheable. On further
inspection, this is due to the use of tracking 'pixels’ which are returned as non-cacheable zero-
size gif image responses.

Large redirects

Many third-parties result in redirect responses, i.e. HTTP status codes 3XX. These occur due to
the use of vanity domains or to share information across domains through request headers.
This is especially true for advertising networks. Large redirect responses are an indication of a
misconfiguration, as the response should be around 340B for avalid Location response
header plus overheads. The chart below shows the distribution of body size for all third-party
redirects in the HTTP Archive.

196 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/requests-cached-by-content-type.png
https://almanac.httparchive.org/static/images/2020/third-parties/requests-cached-by-content-type.png

Part | Chapter 6 : Third Parties

Distribution of third-party 3XX body size
Web Almanac 2020: Third Parties
desktop @ mobile

100000

10000

(8)

1000

100 /

10

N

0 25 50 75 100

Redirect Size

Percentile
Figure 6.8. Distribution of third-party 3XX body size.

The results show that the majority of 3XX responses are small: the 90th percentile is 420 bytes,
i.e. 90% of 3XX responses are 420 bytes or smaller. The 95th percentile is 6.5 kB, the 99th is 36
kB and the 99.9th is over 100 kB! Whilst redirects may seem innocuous, 100kB is an
unreasonable amount of bytes over the wire for a response that simply leads to another

response.

Early-loaders

Scripts that load late in the page will have an impact on total page load duration and page
weight but might have no impact on the user experience. Scripts that load early in the page,
however, will potentially cannibalize bandwidth for critical first-party resources and are more
likely to interfere with the page load. This can have a detrimental impact on performance

metrics and user experience.

The chart below shows the percentage of requests that load early, by device type and third-
party category. The three stand-out categories are CDN, Hosting and Tag Managers: all of
which tend to deliver JavaScript that is requested in the head of a document. Advertising
resources are least likely to load early in the page, due to advertisement network requests

generally being asynchronous scripts run after page load.

2020 Web Almanac by HTTP Archive 197

https://almanac.httparchive.org/static/images/2020/third-parties/redirects-body-size.png
https://almanac.httparchive.org/static/images/2020/third-parties/redirects-body-size.png

Part | Chapter 6 : Third Parties

Early third-party requests by category
Web Almanac 2020: Third Parties
desktop [l mobile

50%
40%
30%
@
173
2 20%
o
@
5 10%
€
8
a—, 0%
o > S 2] o & % > > A > A S . o
T LET T LT ESES
& F S & & £ 9 4 IS S vS
) & (4 o~ < 5 o N
S & 2 4 & §
® & § $
£ N
p~
@
4
Figure 6.9. Early third-party requests by category.
.
CPU |mpact

Not all bytes on the web are equal: a 500 KB image may be far easier for a browser to process
than a 500 KB compressed JavaScript bundle, which inflates to 1.8MB of client-side code! The
impact of third-party scripts on CPU time can be far more critical than the additional bytes or

time spent on the network.

We can correlate the presence of third-party categories with the total CPU time on the page,
this allows us to estimate the impact of each third-party category on CPU time.

198 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/requests-before-dom-by-category.png
https://almanac.httparchive.org/static/images/2020/third-parties/requests-before-dom-by-category.png

Part | Chapter 6 : Third Parties

Distribution of CPU time by categories
Web Almanac 2020: Third Parties

ad

10000 @ ~advertising
analytics
5000
cdn
- []
E @ content
@
£ 1000 customer-success
E 500 hosting
= marketing
(]
other
100 social
50 tag-manager
0 25 50 75 100 unknown
Percentile 2more

Figure 6.10. Distribution of CPU time by categories.

This chart shows the probability density function of total page CPU time by the third-party
categories present on each page. The median page is at 50 on the percentile axis. The data
shows that all third-party categories follow a similar pattern, with the median page between
400 - 1,000 ms CPU time. The outlier here is advertising (in black): if a page has advertising tags
it is much more likely to have high CPU usage during page load. The median page with
advertising tags has a CPU load time of 1,500 ms, compared to 500 ms for pages without
advertising. The high CPU load time at the lower percentiles indicates that even the fastest

sites are impacted significantly by the presence of third-parties categorized as advertising.

timing-allow-origin prevalence

278

The Resource Timing API” allows website owners to measure the performance of individual
resources via JavaScript. This data is, by default, extremely limited for cross-origin resources
like third-party content. There are legitimate reasons for not providing this timing information
such as responses that vary by authentication state: e.g. a website owner may be able to
determine if a visitor is logged into a Facebook by measuring the response size of a widget
request. For most third-party content, though, settingthe timing-allow-origin headeris
an act of transparency to allow the hosting website to track performance and size of their third-

party content.

278. https://developer.mozilla.org/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API

2020 Web Almanac by HTTP Archive 199

https://almanac.httparchive.org/static/images/2020/third-parties/cpu-time-by-category.png
https://almanac.httparchive.org/static/images/2020/third-parties/cpu-time-by-category.png
https://developer.mozilla.org/docs/Web/API/Resource_Timing_API/Using_the_Resource_Timing_API

Part | Chapter 6 : Third Parties

Requests with Timing-Allow-Origin header
Web Almanac 2020: Third Parties

mobile [l desktop
34.7%

40.0%

30.0%

20.0%

10.0%

0.0%

Figure 6.11. Requests with timing-allow-origin header.

The results in HTTP Archive show that only one third of third-party responses expose detailed
size and timing information to the hosting website.

Repercussions

We know that adding arbitrary JavaScript to our sites introduces risks to both site speed and
security. Site owners must be diligent to balance the value of the third-party scripts they
include with the speed penalty they may bring, and use modern features such as subresource

279

integrity”” and content security policy* to maintain a strong security posture. See the Security

chapter for more detail on these and other browser security features.

Conclusion

One of the surprises in the data from 2020 is the drop in relative JavaScript requests: from 32%
of the total to just 22%. It is unlikely that the actual amount of JavaScript on the web has
decreased this significantly, it is more likely that websites are implementing consent
management - so that most dynamic third-party content is only loaded on user opt-in. This opt-
in process could be managed by a Consent Management Platform (CMP) in some cases. The

279. mozilla.org/docs/Web/Security, e_Integrity
280. https://developer.mozilla.org/docs/Web/HTTP/CSP

200 2020 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2020/third-parties/requests-with-tao.png
https://almanac.httparchive.org/static/images/2020/third-parties/requests-with-tao.png
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/docs/Web/HTTP/CSP

Part | Chapter 6 : Third Parties

third-party database does not yet have a category for CMPs, but this would be a good analysis
for the 2021 Web Almanac and is covered through a different methodology in the Privacy
chapter.

Advertising requests appear to have an increased impact on CPU time. The median page with
advertising scripts consume three times as much CPU as those without. Interestingly though,
advertising scripts are not correlated with increased page weight. This makes it even more
important to evaluate the total impact of third-party scripts on the browser, not just request

count and size.

While third-party content is critical to many websites, auditing the impact of each provider is
critical to ensure that they do not significantly impact user experience, page weight or CPU
utilization. There are often self-hosting options for the top contributors to third-party weight,
this is especially worth considering as there is now no caching benefit to using shared assets:

281

e Google Fonts allows self-hosting™ the assets

e JavaScript CDNs can be replaced with self-hosted assets

262

e Experimentation scripts can be self-hosted, e.g. Optimizely

In this chapter we have discussed the benefits and costs of third-party content on the web. We
have seen that third-parties are integral to almost all websites, and that the impact varies by
third-party provider. Before adding a new third-party to your pages, consider the impact that

they will have!

Author
Simon Hearne
X @simonhearne) simonhearne & https://simonhearne.com
Simon is a web performance architect. He is passionate about helping deliver a
faster and more accessible web. You can find him tweeting @SimonHearne and
blogging at simonhearne.com™.

281. https: A F b.c bl hould-y If-host- le-f

282. https://hel) imi; om/Set_Up_Optimi. imizely_self-hosting_for_Akamai_users

283. https://simonhearne.com

2020 Web Almanac by HTTP Archive 201

https://www.tunetheweb.com/blog/should-you-self-host-google-fonts/
https://help.optimizely.com/Set_Up_Optimizely/Optimizely_self-hosting_for_Akamai_users
https://x.com/simonhearne
https://github.com/simonhearne
https://simonhearne.com/
https://x.com/simonhearne
https://simonhearne.com/

202

2020 Web Almanac by HTTP Archive

Part Il Chapter 7: SEO

Part il Chapter?7

SEO

Written by Aleyda Solis, Michael King, and Jamie Indigo

Reviewed by Nate Dame, Catalin Rosu, Dave Sottimano, Dave Smart, Dustin Montgomery, Sawood
Alam, and Barry Pollard

Analyzed by Tony McCreath and Antoine Eripret

Edited by Rick Viscomi

Introduction

Search Engine Optimization (SEO) is the practice of optimizing websites’ technical
configuration, content relevance, and link popularity to make their information easily findable
and more relevant to fulfill users’ search needs. As a consequence, websites improve their
visibility in search engines’ results for relevant user queries regarding their content and
business, growing their traffic, conversions, and profits.

Despite its complex multidisciplinary nature, in recent years SEO has evolved to become one of
the most popular digital marketing strategies and channels.

2020 Web Almanac by HTTP Archive 203

Part Il Chapter 7: SEO

® Search engine opti... ® Pay-per-click Social media mark... .
Topic 9 P yP o + Add comparison
opic Topic Topic
Worldwide 2004 - present ¥ All categories ¥ Web Search v
Interest over time oL

Figure 7.1. Google Trends comparison of SEO versus pay-per-click and social media marketing.

The goal of the Web Almanac’s SEO chapter is to identify and assess main elements and
configurations that play a role in a website’s organic search optimization. By identifying these
elements, we hope that websites can leverage our findings to improve their ability to be
crawled, indexed, and ranked by search engines. In this chapter, we provide a snapshot of their

status in 2020 and a summary of what has changed since 2019*.

It is important to note that this chapter is based on analysis from Lighthouse™ on mobile sites,
the Chrome UX Report™ on mobile and desktop, as well as raw and rendered HTML elements
from the HTTP Archive™ on mobile and desktop. In the case of the HTTP Archive and
Lighthouse, it is limited to the data identified from websites’ home pages only, not site-wide
crawls. We have taken this into consideration when doing assessments. Keeping this distinction
in mind is important when drawing conclusions from our results. You can learn more about it on

our Methodology page.

Let’s go through this year’s organic search optimization main findings.

Fundamentals

This section features the optimization-related findings of the web configurations and elements
that make up the foundation for search engines to correctly crawl, index, and rank websites to

provide users the best results for their queries.

284. https://almanac.httparchive.org/en/2019/seo

285. I .google.c b/tools/lighth

286. .google.c b, -user-experience-report
287. https://httparchive.org/

204