2022

Web AiImanac

HTTP Archive’'s annuadl
state of the web report

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Table of Contents

Partl. Page Content

Chapter 1: CSS 1
Chapter 2: JavaScript 71
Chapter 3: Markup 113
Chapter 4: Structured Data 131
Chapter 5: Fonts 171
Chapter 6: Media 207
Chapter 7: WebAssembly 243
Chapter 8: Third Parties 253
Chapter 9: Interoperability 275
Part Il. User Experience

Chapter 10: SEO 301
Chapter 11: Accessibility 339
Chapter 12: Performance 377
Chapter 13: Privacy 421
Chapter 14: Security 447
Chapter 15: Mobile Web 491
Chapter 16: Capabilities 515
Chapter 17: PWA 533
Part lll. Content Publishing

Chapter 18: CMS 559
Chapter 19: Jamstack 591
Chapter 20: Sustainability 611
Part IV. Content Distribution

Chapter 21: Page Weight 653
Chapter 22: CDN 675
Chapter 23: HTTP 697

2022 Web Almanac by HTTP Archive

Table of Contents

Appendices
Methodology 711
Contributors 721

2022 Web Almanac by HTTP Archive

Part | Chapter1: CSS

Partl Chapter1

CSS

o0 GO
I . W e W s

.

Written by Rachel Andrew
Reviewed by Chris Lilley and Jens Oliver Meiert
Analyzed and edited by Rick Viscomi

Introduction

CSSis the language used to lay out and format web pages and other media. It is one of the three
main languages of the web, joining HTML, which is used for structure, and JavaScript for

behavior.

The past few years have seen a flurry of new CSS features. Many of these have taken inspiration
from things developers were already doing with JavaScript or in preprocessors, while others
provide methods of doing things that were impossible a few years ago. Having new features
available is one thing, but are developers actually using them in their production web pages and

applications? It is this question we will try to answer with data.

In this chapter, we use the data to find out what developers actually use in production, rather
than the features most talked about on Twitter, showcased at conferences, or found in clever
demos. We can see which of the new features are being adopted, which old techniques are

falling out of use, and the legacy techniques that are stubbornly remaining in our stylesheets.

2022 Web Almanac by HTTP Archive 1

Part | Chapter1: CSS

Usage

Each year, we see that CSS grows in size, and 2022 was no exception.

Stylesheet transfer size
Web Almanac 2022: CSS

desktop [l mobile

300 256
o
X
g 200
5 139
w
c
g
8 100 68
ey
é 28
. —_ ||
10 25 50 75 90

Percentile

Figure 1.1. Distribution of the stylesheet transfer size by page.

Other than the 25th percentile, which dropped a percentage point, each percentile showed a
small increase in size. At the 90th percentile the increase was almost 7%, a similar increase to
that seen between 2020" and 2021°. Mobile stylesheets remain slightly smaller than those
served to desktop.

The desktop page with the greatest CSS weight was slightly smaller than last year at 62,631 KB.

The largest mobile stylesheet had risen from 17,823 KB to 78,543 KB—thankfully this was an
exception.

1. https://almanac.httparchive.org/en/2020/css
2. https://almanac.httparchive.org/en/2021/css

2 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/stylesheet-transfer-size.png
https://almanac.httparchive.org/static/images/2022/css/stylesheet-transfer-size.png
https://almanac.httparchive.org/en/2020/css
https://almanac.httparchive.org/en/2021/css

Part | Chapter1: CSS

Stylesheets per page
Web Almanac 2022: CSS

desktop [l mobile

25 22
20
()]
g
=15 13
9]
(=%
8
[
2 10 7
3
2
2 3
«n 5
: I
. — [
10 25 50 75 90
Percentile

Figure 1.2. Distribution of the number of stylesheets per page.

The number of stylesheets per page has remained almost identical to 2021, with an increase of
one for mobile at the 50th percentile.

Last year the record was broken for the number of stylesheets loaded by a single page at 2,368.
This year we found one site loading 1,387 stylesheets on mobile, still a significant amount.

2022 Web Almanac by HTTP Archive 3

https://almanac.httparchive.org/static/images/2022/css/stylesheet-count.png
https://almanac.httparchive.org/static/images/2022/css/stylesheet-count.png

Part | Chapter1: CSS

Rules per page
Web Almanac 2022: CSS
desktop [l mobile

21500 2,023
o 2,000
(=]
[}
Q
2 1,500 1,197
L]
°
E
1,000
5 b 613
[}
Qo
E 500 224
z 52
. — [|
10 25 50 75 90
Percentile

Figure 1.3. Distribution of the total number of style rules per page.

Taking a look at the number of style rules in a page showed an increase across all percentiles;
the lower percentiles showing more rules for mobile, the higher percentiles more for desktop.
These increases are substantial. Desktop rules for the 50th percentile increased by 130 rules,
and the 90th percentile by 202.

Rules per stylesheet
Web Almanac 2022: CSS
desktop [l mobile

jl
D
8
5 200 110
Q
0
°
2
-
[s]
s 100
o
§ 4 31
0
) i
10 25 50 75 90
Percentile

Figure 1.4. Distribution of the number of rules per stylesheet.

4 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/rules-per-page.png
https://almanac.httparchive.org/static/images/2022/css/rules-per-page.png
https://almanac.httparchive.org/static/images/2022/css/rules-per-stylesheet.png
https://almanac.httparchive.org/static/images/2022/css/rules-per-stylesheet.png

Part | Chapter1: CSS

We can see from the total number of stylesheets loaded, that typically people are breaking
their CSS down into multiple stylesheets. At the 50th percentile this works out as 31 rules per
stylesheet, growing to 276 rules on desktop and 285 rules for mobile at the 90th percentile.

Selectors and the cascade

2022 saw a shake-up with regard to the cascade with @layer landingin all engines. This new
at-rule enables the grouping of selectors into layers, the order of precedence of the layers can

then be managed.

It's alittle early to see widespread usage of this new method of managing the cascade, but let’s
take a look at how selector usage has evolved.

2022 Web Almanac by HTTP Archive 5

https://developer.mozilla.org/docs/Web/CSS/@layer
https://developer.mozilla.org/docs/Web/CSS/@layer

Part | Chapter1: CSS

Class hames
Most popular class names
Web Almanac 2022: CSS
desktop [l mobile
active 47%
fa 33%
fa-* 32%
wp-* 31%
button 27%
pull-right 26%
emoji 26%
disabled 26%
pull-left 25%,
% title 25%
c
é hidden 24%,
(&) container 23%
selected 23%
btn 22%
has-large-font-size 22%,
loading 22%,
has-small-font-size 229%
has-medium-font-size 22%
P ound-color 22%
has-lummous-wwd-a_rggg: 229
0% 10% 20% 30% 40% 50%

Percent of pages

Figure 1.5. The most popular class names by the percent of pages.

As in 2020 and 2021 the most popular class name on the web is active .The fa, fa-*
prefixes for Font Awesome still coming second and third. However, wp-* class names have
crept up the rankings, moving to fourth place. They now show up on 31% of pages, having been
at 20% in 2021. We also see class names such as has-large-font-size appearing, these are
used in the new WordPress Block Editor.

clearfix hasdisappeared from the top 20, it is now found on only 10% of pages, a very clear

6 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/top-selector-classes.png
https://almanac.httparchive.org/static/images/2022/css/top-selector-classes.png

Part | Chapter1: CSS

indication that float-based layouts are vanishing from the web.

Most popular IDs
Web Almanac 2022: CSS

desktop [l mobile

content 15%
footer 12%
header 10%
fb-root 10%
fb_dialog_loader_close 10%
a fb_dialog_ipad_overlay 10%
fb_dialog_loader_spinner 10%
respond 9%,
comments 9%,
main 8%
0% 5% 10% 15% 20%

Percent of pages

Figure 1.6. The most popular ID names by percent of pages.

The name content isonce again the most popular ID name, followed by footer ,and
header . The IDs starting with fb_ indicate use of Facebook widgets. In 2021 IDs beginning

with rc- ,indicating use of Google’s reCAPTCHA system were seen on 7% of pages, and are

still seen with the same frequency, despite being pushed out of the top ten by the Facebook ID

names.

2022 Web Almanac by HTTP Archive 7

https://almanac.httparchive.org/static/images/2022/css/top-selector-ids.png
https://almanac.httparchive.org/static/images/2022/css/top-selector-ids.png

Part | Chapter1: CSS

limportant
limportant properties per page
Web Almanac 2022: CSS
desktop [l mobile
10% 9%
S
S 8%
g
g 5%
3 5%
g
g 2%
7% 3% 1%
H 0%
£ p— I
= 0%
’ 10 25 50 75 90
Percentile

Figure 1.7. The distribution of the number of !important properties per page.

Theuseof !important hasslightly increased for the top two percentiles this year. As
@layer usage takes hold, it will be interesting to see how this impacts the use of this property,
typically used to deal with specificity issues.

8 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/important-adoption.png
https://almanac.httparchive.org/static/images/2022/css/important-adoption.png

Part | Chapter1: CSS

Top limportant properties
Web Almanac 2022: CSS

desktop [l mobile

display 83%

color 77%

width 76%

height
padding

background

Property

background-color

margin

border

font-size

0% 25% 50% 75% 100%

Percent of pages

Figure 1.8. The top properties that ! important is applied to by percent of pages.

Interms of what !important isapplied to, the top properties remain unchanged. However,
position hasfallen out of the top ten, to be replaced with font-size.

2022 Web Almanac by HTTP Archive 9

https://almanac.httparchive.org/static/images/2022/css/important-props.png
https://almanac.httparchive.org/static/images/2022/css/important-props.png

Part | Chapter1: CSS

Selector specificity

Percentile Desktop Mobile

10 0,1,0 0,1,0
25 0,1,2 0,1,3
50 02,0 02,0
75 0,2,0 0,2,0
920 0,3,0 0,3,0

Figure 1.9. Distribution of the median specificity per page.

Except for desktop at the 25th percentile, median specificity values are exactly the same as last
year, remaining constant over the past two years. These values indicate the flattened specificity
created by methodologies such as BEM’.

3. https://en.bem.info/methodology/quick-start/

10 2022 Web AlImanac by HTTP Archive

https://en.bem.info/methodology/quick-start/

Part | Chapter1: CSS

Pseudo-classes and -elements

Most popular pseudo-classes
Web Almanac 2022: CSS

desktop [l mobile

hover 91%
before 77%
focus 76%
after 75%
active 73%
first-child 63%
last-child 60%
not 59%,
visited 48%
root 45%
nth-child 39%
link 34%
disabled 29%
checked — 229,

-ms-input-pl
aceholder ————— 19%

Pseudo-class

0% 25% 50% 75% 100%

Percent of pages

Figure 1.10. Most popular pseudo-classes by percent of pages.

Once again the user-action pseudo-classes :hover, :focus,and :active areinthetop
three spots. The negation pseudo-class :not () also continues its rise in popularity, along with

:root , likely used to create custom properties.

Last year it was noted that : focus-visible,away to style elements in focus in a way that
better matches user expectations, appeared in less than 1% of pages. The property has been
available in all three major engines since March 2022, and is now found on 10% of desktop and
9% of mobile pages.

2022 Web Almanac by HTTP Archive 1l

https://almanac.httparchive.org/static/images/2022/css/pseudo-classes.png
https://almanac.httparchive.org/static/images/2022/css/pseudo-classes.png

Part | Chapter1: CSS

Most popular unprefixed pseudo-elements
Web Almanac 2022: CSS

desktop [l mobile

before

after

placeholder

selection

root

first-letter

Pseudo-element

marker
backdrop
full-page-media

file-selector-button

0% 10% 20% 30% 40% 50%

Percent of pages
Figure 1.11. Most popular pseudo-elements by percent of pages.

We filter out any prefixed, and therefore browser-specific, pseudo-elements. These are
typically used to select interface components or parts of browser chrome, and we are
interested in the pseudo-elements developers are actually using.

Theuseof ::before and ::after hasincreased since last year. These are used to insert
generated content into the document. By checking usage of the content property, itis
possible to see that this is most often being used to insert an empty string, used for styling
purposes. Generated content is one way to style a grid area without needing to add an element;
perhaps this has contributed to the rise in usage of these properties?

Useof the ::marker pseudo-element has now made 1%, showing that people are slowly
starting to take advantage of the ability to select and style list markers.

12 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/pseudo-elements.png
https://almanac.httparchive.org/static/images/2022/css/pseudo-elements.png

Part | Chapter1: CSS

Attribute selectors

Most popular attribute selectors
Web Almanac 2022: CSS

desktop [l mobile

type 54%
class 37%
disabled 24%

i ——— 7%

role — 11%
title ——————— 11%
hidden |p— 10%
href —— 10%
aria-disabled p— Q9
style — 8%
SIC p— 8%

CONtrolS s 7%

Attribute name

0 — 7%
1ang s 5%

aria-hidden o 5%

tabindex F 4%
name P 4%
data-type F 4%
aria-selected 4%

multiple P 3%

0% 20% 40% 60%

Percent of pages

Figure 1.12. Most popular attribute selectors by percent of pages.

The most popular attribute selector is type , found on 54% of pages. The next most popular
attribute selectors are class on 37%, disabled on25%,and dir on 17% of pages.

Values and Units

CSS provides multiple ways to specify values and units, either in set lengths, or calculations

2022 Web Almanac by HTTP Archive 13

https://almanac.httparchive.org/static/images/2022/css/attribute-selectors.png
https://almanac.httparchive.org/static/images/2022/css/attribute-selectors.png

Part | Chapter1: CSS

based on global keywords.

Length
Most popular <length> units
Web Almanac 2022: CSS
desktop [l mobile
80% 1%
2 60%
o
&
z
b 40%
ks
g 18%
5 % 8%
- |
px % em rem

Unit

Figure 1.13. Most popular <length> units by percent of pages.

Pixel lengths remain the most popular at 71%, the same percentage as in 2021. The spread of
usage remains roughly the same too.

14 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/length-units.png
https://almanac.httparchive.org/static/images/2022/css/length-units.png

Part | Chapter1: CSS

Property

font-size
border-radius
line-height

border

text-indent
vertical-align

gap
margin-inline-start
grid-gap
margin-block-end
padding-inline-start

mask-position

The up and down arrows on this chart show the change from the results in 2021°. As seen last

px

(A2%) 71%

(W1%) 64%

(¥5%) 49%

(V1%) 70%

(V5%) 26%

(V26%) 3%

(A4%) 25%

(W31%) 7%

(A5%) 68%

(V1%) 3%

(W4%) 29%

(A1%) 1%

<number>

2%

(V1%) 20%

(A4%) 35%

28%

(A13%) 65%

(W9%) 3%

(V6%) 10%

(A3%) 49%

(V1%) 10%

(A54%) 85%

(A11%) 16%

(A3%) 3%

em

(W1%) 15%

3.13%

12.94%

2%

(V4%) 5%

(A39%) 94%

(A32%) 33%

(A30%) 44%

(V2%) 7%

(V53%) 12%

(V10%) 53%

(V14%) 36%

o°®

5%

(A1%)11%

(W1%) 2%

0%

(V3%) 5%

0%

0%

0%

0%

0%

0%

(A10%) 60%

rem

(A1%) 6%

(A2%) 2%

(A1%) 1%

0%

0%

0%

(v31%) 32%

0%

(W1%) 15%

0%

(A3%) 3%

0%

Figure 1.14. Distribution of length types per property.

pt
(W1%) 2%
0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

0%

year, in the majority of cases there is a shift away from using pixels, in favor of other length

units. Once again, the vertical-align property saw a huge drop in pixel and <number>

use,and alargerisein em use.

4. https://almanac.httparchive.org/en/2021/css#fig-15

2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/css#fig-15

Part | Chapter1: CSS

Most popular font-relative units of length
Web Almanac 2022: CSS (mobile)

em
79.9%

Figure 1.15. The most popular font-relative length units.

While em remains the most popular method of sizing fonts, the swing to rem continues with a
small (just under two point) increase over last year.

Zero lengths by unit
Web Almanac 2022: CSS (mobile)

other
0.7%

12.7%

Unitless 0
86.6%

Figure 1.16. The units (or lack thereof) used on zero-length values.

There are a few properties that allow bare <number> units (for example, line-height), but

16 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/font-relative-length-units.png
https://almanac.httparchive.org/static/images/2022/css/font-relative-length-units.png
https://almanac.httparchive.org/static/images/2022/css/zero-length-units.png
https://almanac.httparchive.org/static/images/2022/css/zero-length-units.png

Part | Chapter1: CSS

<length> values have a special case where a length of zero does not require a unit. When we
looked at all zero-length values, almost 87% of them omitted the unit, this is a small decrease

from last year. Nearly all of those zero lengths that included a unit used pixels (Opx).

Calculations

Top properties using calc()
Web Almanac 2022: CSS

desktop [l mobile

width 27%
max-width
top

height

left
max-height
right
margin-left

min-height

Property

margin-right
padding-left
margin-top
padding-bottom
margin

bottom
padding-right
flex-basis

transform

0% 10% 20% 30%

Percent of pages

Figure 1.17. The most popular properties using calc() functions.

As in previous years, the most popular use of calc() isinvaluesfor width. This use has
dropped 12% points, however, max-width hasincreased in popularity by 9 points.

2022 Web Almanac by HTTP Archive 17

https://almanac.httparchive.org/static/images/2022/css/calc-props.png
https://almanac.httparchive.org/static/images/2022/css/calc-props.png

Part | Chapter1: CSS

Top units used in calc()
Web Almanac 2022: CSS

desktop [l mobile

50%
’ 42% 42%

40%
8
2 30%
a
‘s
S 20%
o
L5} 0, 0, 0,
- 10% 8% 8% 8% 6%

0%

Unit

Figure 1.18. The most popular length units used in calc() functions.

The percentage of sites using pixels in calculations has decreased 9 points, it is now level with
% usage at 42%. There is a significant increase in usage for other values, the viewport units vw

and vh bothincreased from 2% to 8% this year, em increased the same amount, and use of
rem doubled from 3% to 6%.

Top operators used in calc()
Web Almanac 2022: CSS
desktop [l mobile

50%

' 42%

40%
8
2 30%
o
ksl 18%
e 20%
g 1% 10%
o

- . .

0%

- + / *
Operator

Figure 1.19. The most popular operators used in calc() functions.

18 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/calc-units.png
https://almanac.httparchive.org/static/images/2022/css/calc-units.png
https://almanac.httparchive.org/static/images/2022/css/calc-operators.png
https://almanac.httparchive.org/static/images/2022/css/calc-operators.png

Part | Chapter1: CSS

Subtraction remains the clear favorite in terms of calculation operators, but all four top values
saw a drop since 2021, other than addition, which remained the same.

Number of units per calc() occurrence
Web Almanac 2022: CSS
desktop [l mobile

100%
79%
2 75%
Q
c
e
3
3 50%
P
o
@ 20%
E 25%
o
. 10/0
0%
1 2 3+

Units per calc() occurrence

Figure 1.20. The number of unique units used in calc() values.

As last year, calc() valuestend to be fairly simple. The majority using two values, such as the
common use case of subtracting a fixed length such as pixels from a percentage. There was a
small rise in one unit values, and a small drop in two units.

2022 Web Almanac by HTTP Archive 19

https://almanac.httparchive.org/static/images/2022/css/calc-unit-complexity.png
https://almanac.httparchive.org/static/images/2022/css/calc-unit-complexity.png

Part | Chapter1: CSS

Global keywords

Global keyword adoption
Web Almanac 2022: CSS
desktop [l mobile

100% 87%
75% 64%

€N

S 51%

©

(=%

s 50%

€

8

o

a 25%

4%
0% A
inherit initial unset revert

keyword

Figure 1.21. Usage of global keyword values.

Last year the use of global keywords had risen significantly, in 2022 inherit isfoundinthe
same percentage of pages, however the other three values have increased in use. The newer
value of revert hasincreased from 1% to 4%.

20 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/keywords.png
https://almanac.httparchive.org/static/images/2022/css/keywords.png

Part | Chapter1: CSS

Custom Properties

Custom property usage
Web Almanac 2022: CSS (mobile)

2019 2020 W 2021 | 2022

10/
g 0% 43% 43%
E]
‘a 0,
2 40% 35%
>
h =
[
Q.
o
g 30%
€
L
w0
3 20%
o o
£
[}
=
2 10%
[}
[}
Q@
2
» 0%

Custom properties var()

Figure 1.22. Usage of custom properties over the past four years.

Custom properties (sometimes known as CSS variables) have seen a huge surge in use, the
growth between 2021 and 2022 is no exception. 43% of pages, for both desktop and mobile are
using custom properties and have at least one var() function.

2022 Web Almanac by HTTP Archive 21

https://almanac.httparchive.org/static/images/2022/css/custom-property-adoption.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-adoption.png

Part | Chapter1: CSS

Custom property names
Web Almanac 2022: CSS (mobile)

Woocommerce R

1.3%
Bootstrap

10.2%

Elementor

11.4% WordPress
40.2%

Miscellaneous
36.5%

Figure 1.23. Source of common custom property names.

As seen last year, WordPress is the driver for the most common custom property names, these
are easily identifiable by the —wp—* prefix. Following these, we once again found a lot of color
names —white, —blue, and so on, used to assign a particular shade of that color.

22 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/custom-property-names.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-names.png

Part | Chapter1: CSS

Types

Custom property value types
Web Almanac 2022: CSS (mobile)

calc

2.2%
font_stack
76%
image
9.0%

color
30.6%

number
11.4%

other
15.3%

dimension
24.0%

Figure 1.24. Distribution of custom property value types.

The value of a custom property includes a type. For example, --red: #EF2143 isassigninga
colorvalueto --red,whereas --multiplier: 2.5 isassigninganumber value. The types
have changed a little since last year. We know that setting a color is the most common use of
custom properties, and the amount of pages on which color types are found is increasing.
However, in terms of the share of usage, this has dropped from 40% to 30%. Entering this
distributionis calc() ,andimages as a value type.

2022 Web Almanac by HTTP Archive 23

https://almanac.httparchive.org/static/images/2022/css/custom-property-value-types.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-value-types.png

Part | Chapter1: CSS

Properties
Custom property properties
Web Almanac 2022: CSS
desktop [l mobile
color 38%
background-color 34%
background
border-color
o font-size
£
2
< width
o
padding-top 21%
justify-content 20%
border 19%
height 17%
0% 10% 20% 30% 40%

Percent of pages

Figure 1.25. The most popular custom property properties by percent of pages.

While the number of pages including these properties has increased, the properties that have
custom properties as a value have remained in roughly the same order as last year. Custom
properties are most likely to be used for color , unsurprisingly as creating color schemes is an
obvious use of this functionality. Using the var() functiontoset font-size has moved
from 10th place to 5th in the list however, and setting the alignment value of justify-
content has moved into the top ten. In 2021 5% of mobile, and 4% of desktop pages were
using custom properties to set this alignment value, this has jumped to 20%. From the data it
looks as if some of this increase is due to WordPress usage, 5% of pages use the

—navigation-layout-justify custom property, for example.

24 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/custom-property-props.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-props.png

Part | Chapter1: CSS

Functions

Custom property functions
Web Almanac 2022: CSS

desktop [l mobile

calc() 30%
linear-gradient() 1%
rgha() —— 6%
rotate() e — 59,
translate() —— 5%
scalex() p— 5%
translatex() p— 4%
% scaley() p— 4%
b translatey() p— 4%
skewy() p— 4%,
skewX() |— 4%
min() | e— 4%
rgb() p— 3%
rotatey() p— 3%
rotatex() — 3%
oo 10% 20% 30%

Percent of pages
Figure 1.26. The most popular custom property functions by percent of pages.

We saw that calc() has started to be notable as a value type for custom properties, and it is
by far the most commonly seen function used in this way. It is followed by linear -
gradient() andthe rgba() functionused toset RGB color values with an alpha channel.
After this are the various functions used for transitions and animations, showing a growing use

of custom properties in this area.

Complexity

It’s possible to include custom properties in the values of other custom properties. Consider

this example’ from the 2020 Web Almanac:

5. ht I F hive.org/en/2020/css#

2022 Web Almanac by HTTP Archive 25

https://almanac.httparchive.org/static/images/2022/css/custom-property-functions.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-functions.png
https://almanac.httparchive.org/en/2020/css#complexity

Part | Chapter1: CSS

rroot {
--base-hue: 335; /* depth =0 */
--base-color: hsl(var(--base-hue) 90% 50%); /* depth =1 */
--background: linear-gradient(var(--base-color), black); /* depth
=2 *x/
}

As the comments in the previous example show, the more that these sub-references are
chained together, the greater the depth of the custom property.

Custom property depth
Web Almanac 2022: CSS
desktop [l mobile
80%
62%
60%

36%
40%

20%

Percent of occurrences

2% 0%
0%

Depth

Figure 1.27. The distribution of custom property depth.

As seen in 2021, the vast majority of custom properties had a depth of zero, meaning that they
did not include the values of other custom properties in their value. There has been a small
increase in the number of properties with a depth of one, and a small decrease in the number
with a depth of two. However, it does not seem from the data that our use of custom properties
has become much more complex in the past year.

26 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/custom-property-depth.png
https://almanac.httparchive.org/static/images/2022/css/custom-property-depth.png

Part | Chapter1: CSS

Colors
Most popular color formats
Web Almanac 2022: CSS
desktop [l mobile
#mggbb 49%
#rgb
rgba()
transparent
namedColor
rgb()
#rrggbbaa r 0%
g hsla() r 0%
“_‘g currentColor r 0%
o #irgba 0%
system 0%
0| 0%
color() 0%
w0 0%
h0 | 0%
201 0%
0% 10% 20% 30% 40% 50%

Percent of occurrences

Figure 1.28. The most popular color formats by percent of occurrences.

The use of the time-honored six-digit #RRGGBB syntax remains unchanged since 2021, being
used in half of color declarations. Despite the widespread availability of eight-digit
#RRGGBBAA hex,the rgba() formisthe most widely used way to add an alpha component,

likely because it was implemented in browsers much earlier.

The usage of other values showed a similar story; the web community hasn't yet started to take
advantage of other color formats, even widely supported ones suchas hsl() .

2022 Web Almanac by HTTP Archive 27

https://almanac.httparchive.org/static/images/2022/css/color-formats.png
https://almanac.httparchive.org/static/images/2022/css/color-formats.png

Part | Chapter1: CSS

Least popular named colors
Web Almanac 2022: CSS

desktop [l mobile

mediumspringgreen

darksalmon
mediumorchid 1,908
darkorchid
arkorchi 1,963
mediumslateblue 2.054
. tl
o
3 lavenderblush 2,076
rosybrown 2.086
’
moccasin 2.106
’
springgreen 2143
'
thistle 2,205
0 500 1,000 1,500 2,000 2,500

Number of occurrences

Figure 1.29. The least popular named colors by number of occurrences.

8% of pages use the keyword transparent , making it the most popular named color. 2% of
pages use other named colors, white beingthe most popular followed by black . At the

other end of the scale mediumspringgreen languishes as the least popular color.

28 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/color-keywords.png
https://almanac.httparchive.org/static/images/2022/css/color-keywords.png

Part | Chapter1: CSS

Alpha support and use

Most popular color formats by alpha support
Web Almanac 2022: CSS

desktop [l mobile

100%
77%
e 75%
o
c
o
3
8 50%
G
E 23%
s 25%
) -
0%
Alpha No Alpha

Color format

Figure 1.30. The most popular color formats by alpha support.

The rgba() functionis the third most popular color format, used substantially more than the

rgb () form, presumably in order to make use of alpha channel support. We looked at the
occurrences of values with and without alpha support, to find that 77% of color formats used do
not have support for an alpha channel.

2022 Web Almanac by HTTP Archive 29

https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha.png
https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha.png

Part | Chapter1: CSS

Color formats by alpha support
Web Almanac 2022: CSS (mobile)

B system #rgba [hsl() [currentColor [l #rrggbbaa [l rgb() [hsla()
namedColor [l transparent [l rgba()

25%
» 20%
Q
(]
5
£ 15%
Q
(]
o
S 10%
k]
Q
<
K 5%

]
0%
Alpha No Alpha

Color format

Figure 1.31. Distribution of color formats by alpha support.

As we would expect from other data, rgba() isthe most popular alpha-supporting format in
use, followed by the transparent keyword. Other formats suchas hsla() barely feature.

New color properties and values

There are interesting things happening in the world of color. In addition to new color spaces, we
have a number of color-related properties and values. We wondered if any of these were

making an impact on the data.

The accent-color property lets you add your brand color as an accent color to notoriously
hard-to-style form elements such as checkboxes, radio buttons, and range sliders. Perhaps due
to the fact it has only been available in all engines since March this year, it still shows less than
0.3% usage.

Another property becoming available in all engines this year is color-scheme, a property
that lets you specify in which color schemes (light or dark) a component can be rendered. This
property is, somewhat surprisingly, so far only found in 0.2% of pages.

30 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha-distribution.png
https://almanac.httparchive.org/static/images/2022/css/color-formats-alpha-distribution.png
https://web.dev/accent-color/
https://web.dev/accent-color/
https://developer.mozilla.org/docs/Web/CSS/color-scheme
https://developer.mozilla.org/docs/Web/CSS/color-scheme

Part | Chapter1: CSS

Gradients and Images

Gradient function

Most popular gradient functions
Web Almanac 2022: CSS

desktop [l mobile

linear-gradient 76%
-webkit-linear-gradient
-webkit-gradient
-o-linear-gradient
-moz-linear-gradient
-ms-linear-gradient
radial-gradient
-webkit-radial-gradient
repeating-linear-gradient

-moz-radial-gradient

0% 20% 40% 60% 80%

Percent of pages

Figure 1.32. The most popular gradient functions by percent of pages.

Linear gradients continue as the leading choice, appearing on a slightly higher percentage of
pages than in 2021, however gradient use stays pretty much the same for the last two years.
There is still a very high frequency of prefix use when it comes to the linear-gradient
property, despite this having been supported unprefixed in all engines for over nine years.

2022 Web Almanac by HTTP Archive

31

https://almanac.httparchive.org/static/images/2022/css/gradient-functions.png
https://almanac.httparchive.org/static/images/2022/css/gradient-functions.png

Part | Chapter1: CSS

Image formats
CSS-initiated image formats
Web Almanac 2022: CSS (mobile)
other
0.1% /‘ ‘
webp
9.3%
png
) 30.3%
1pg
18.1%
gif
19.0%
svg
23.1%

Figure 1.33. Image formats as loaded from CSS.

This chart breaks down the image formats of images loaded from CSS. It does not include
images loaded from HTML, just those that appear in a style rule. There has been a significant
swing away from PNG—down from 44% to 30%—with SVG and WebP each seeing an increase
of 6 percentage points.

32 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/image-formats.png
https://almanac.httparchive.org/static/images/2022/css/image-formats.png

Part | Chapter1: CSS

Number of images in CSS

Number of images loaded
Web Almanac 2022: CSS
desktop [l mobile

10
8
6 5
4 3
0 | |
50 75 %

10 25

Number of images

Percentile

Figure 1.34. Distribution of number of images loaded from CSS.

The number of images loaded from CSS remains the same as in 2021. CSS doesn’t cause many
image loads: the lower two percentiles came in at one image each, and even the 90th percentile
hovered around 10 images, across all image types.

Weight of images in CSS

While CSS doesn’t cause many image loads, the weight of those images is important. The data
showed that image weight has increased from 2021, despite the fact that the number of images
has stayed the same.

2022 Web Almanac by HTTP Archive 33

https://almanac.httparchive.org/static/images/2022/css/css-initiated-images.png
https://almanac.httparchive.org/static/images/2022/css/css-initiated-images.png

Part | Chapter1: CSS

Total image weight
Web Almanac 2022: CSS
desktop [l mobile

600 547
g
= 400
=y
o
Qo
2
(0]
g
E 200 134
s
(=}
'_ ! ’ " l

0 AN

10 25 50 75 90
Percentile

Figure 1.35. Distribution of total weight of images loaded from CSS.

The median page, on mobile, has increased image weight by 1KB to 17KB. At the upper end of
the chart however, at the 90th percentile we see an increase of 67KB on mobile and 42KB on

desktop. As in 2021, the weight is consistently lower on mobile, an indication that developers
are trying to serve smaller images to mobile contexts.

34 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/image-weights.png
https://almanac.httparchive.org/static/images/2022/css/image-weights.png

Part | Chapter1: CSS

Pixel size of images in CSS

Image size in square pixels
Web Almanac 2022: CSS
desktop [l mobile

50,000 44,096

Z 40,000
]
X
[s%
@ 30,000
©
3
o
L
o 20,000
N
w
S
@ 10,000 2.910
£ 729 ’

0 I

25 50 75
Percentile

Figure 1.36. Distribution of sizes of images loaded from CSS.

This is an interesting chart which shows that at the lower end of the chart people are serving
images of around the same size to desktop and mobile, at the 50th and 75th percentile pages
are serving far larger images to their mobile users than they do to desktop. What the data
shows is that people are serving much wider images to their mobile users, perhaps to try to
account for tablets in landscape mode.

Layout

We have many options to choose from when doing layout on the web, and most sites will be
using a variety of these methods. A simple search of the data, looking for property and value
combinations to detect layout methods in use, gives us the following table.

2022 Web Almanac by HTTP Archive

35

https://almanac.httparchive.org/static/images/2022/css/image-dimensions.png
https://almanac.httparchive.org/static/images/2022/css/image-dimensions.png

Part | Chapter1: CSS

Top layout methods
Web Almanac 2022: CSS

desktop [l mobile

block l— 92%
absolute P — 92%
inline-block — 90%
floats — 89%
fixed — 84%
inline — 82%
css-tables — 79%
flex ’— 7%
X 51%
inline-flex — 48%
grid — 40%
sticky _ 29%
list-item — 28%
inline-box — 27%
inline-table — 20%
contents _ 13%
inline-grid 10%
none _7%
flexbox 7%
inline-stack F 3%
auto P 2%

0% 25% 50% 75% 100%
Percent of pages

bo:

Layout method

Figure 1.37. Layout methods by percent of pages.

This chart doesn't tell us the main layout method used on a page. It indicates that a property or
value appears in the CSS for those pages. For example, 51% of pages are using the old 2009
version of flexbox, with display: box.It’s likely this has been added for backwards
compatibility, perhaps via a tool such as Autoprefixer.

36 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/layout-props.png
https://almanac.httparchive.org/static/images/2022/css/layout-props.png

Part | Chapter1: CSS

Flexbox and grid adoption

Flexbox and Grid adoption by year
Web Almanac 2022: CSS (mobile)
2019 2020 W 2021 [2022
100%

74%

75%

50%

Percent of pages

ml

flexbox grid

On/ﬂ

Figure 1.38. Flexbox and grid adoption over the past four years.

Flexbox and grid usage continue to grow. In 2021, flexbox adoption was 71%—it’s now at 74%.
Grid has jumped from 8% to 12%. Note that, in contrast to the previous section, what is
measured here is the percentage of pages that are actually using flexbox or grid for layout, as
opposed to the pages that simply have some sort of flexbox or grid property in their stylesheet.

Grid adoption is reasonably slow. We feel this may be due to the prevalence of frameworks
being used for layout, many of which have based their layouts on flexbox.

We also took a look at a couple of values of flex and grid properties that are newer to us,
to see how adoption of these new features was developing.

The value of content for the flex-basis property is an explicit instruction for the browser to
look at the intrinsic content size of the item, rather than any width set onit. It’s a newer value,
at the time of writing not available in the release version of Safari. Currently, only 0.5% of
mobile and 0.6% of desktop sites use this value.

The subgrid valuefor grid-template-rows and grid-template-columns is,atthe
time the queries were run, only supported in Firefox. Perhaps unsurprisingly, it appears in only
211 mobile and 212 desktop pages in the entire dataset. As the value is part of the Interop
2022 project, we will be interested to see how support grows once this becomes interoperable.

2022 Web Almanac by HTTP Archive 37

https://almanac.httparchive.org/static/images/2022/css/flexbox-grid.png
https://almanac.httparchive.org/static/images/2022/css/flexbox-grid.png

Part | Chapter1: CSS

Box sizing

92%

Figure 1.39. The percentage of pages that set box-sizing: border-box .

The web has overwhelmingly voted to reject the original W3C box model in favor of box-
sizing: border-box .The number of pages using this property and value combination has
risen slightly again to over 90% of pages.

44%

Figure 1.40. The percentage of pages that declare box-sizing: border-box onthe *
selector.

Almost half of all pages analyzed apply border-box sizing to every element on the page via
the universal selector (*).

Around 22% of pages use border-box oncheckboxes and radio buttons. We see a lot of
.wp- classes again, showing that WordPress is responsible for the use on 20% of pages
analyzed.

38 2022 Web Almanac by HTTP Archive

Part | Chapter1: CSS

border-box declarations per page
Web Almanac 2022: CSS

desktop [l mobile 5

5

4
()]
j=2]
®
a
5 3
(=9
w
s
z§ 2
©
5
(=] 1

0 0 0 0
0
10 25 50 75 90
Percentile

Figure 1.41. Distribution of the number of border-box declarations per page.
The median mobile page declares border-box 22 times. At the 90th percentile, it's declared

an overwhelming 101 times. Note that previous years’ queries had a bug affecting this metric.
Correcting for that, the results in 2021 are comparable.

Multicolumn

23%

Figure 1.42. The percentage of pages using multi-column layout.

Use of multi-column’ layout has increased once again, it's now found on 23% of pages, a rise of 3
points since 2021.

6. https://developer.mozilla.org/docs/Web/CSS/CSS_Columns

2022 Web Almanac by HTTP Archive 39

https://almanac.httparchive.org/static/images/2022/css/box-sizing.png
https://almanac.httparchive.org/static/images/2022/css/box-sizing.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Columns

Part | Chapter1: CSS

The aspect-ratio property

Figure 1.43. The percentage of pages using the aspect-ratio property.

Thenew aspect-ratio property isused on 2% of pages. This became interoperable towards
the end of 2021, so it will be interesting to see usage of this property grow over time.

Transitions and animations

The animation property appearson 77% of mobile pages (the same as last year) and a slight
increase on desktop to 76.8%. The transition property is even more popular, it’s found on
85% of mobile and 85.6% of desktop pages. The desktop frequency has dropped slightly by
around 4 percentage points since 2021.

40 2022 Web AlImanac by HTTP Archive

Part | Chapter1: CSS

Most popular transition properties
Web Almanac 2022: CSS

desktop [l mobile

all 53%
opacity 50%
transform 38%
none 25%
height 22%
color 21%
background-color 20%

background p—— 17%

Property

box-shadow | 13%
left — 12%
Width pe— 10%
0P — 10%
-webkit-transform g 10%,
border-color \— 8%
visibility p— 8%,

0% 20% 40% 60%

Percent of pages

Figure 1.44. The most popular transition properties by percent of pages.

As seen last year, the most common usage is to apply transitions to all animatable properties
withthe all keyword. This usage has grown to 53%—up 7 percentage points—followed by
opacity at 50% of pages.

2022 Web Almanac by HTTP Archive 41

https://almanac.httparchive.org/static/images/2022/css/transition-props.png
https://almanac.httparchive.org/static/images/2022/css/transition-props.png

Part | Chapter1: CSS

Transition duration (ms)

Distribution of transition durations
Web Almanac 2022: CSS

desktop [mobile 1,000
1,000
750
500 400
300
170
) - I I
., mm HH
10 25 50 75 90
Percentile

Figure 1.45. Distribution of transition durations.

Looking at the duration of transitions, we see a change from last year. In 2021, at the 90th

percentile the median transition duration was half a second, this has now jumped to 1 second.

We see increases across all top four percentiles.

Transition delay (ms)

Distribution of transition delays
Web Almanac 2022: CSS
desktop [l mobile
2000

1000

O l

500

140 300

-1000 -600

10 25 50 75 90

Percentile

Figure 1.46. Distribution of transition delays.

42

2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/transition-durations.png
https://almanac.httparchive.org/static/images/2022/css/transition-durations.png
https://almanac.httparchive.org/static/images/2022/css/transition-delays.png
https://almanac.httparchive.org/static/images/2022/css/transition-delays.png

Part | Chapter1: CSS

The distribution of transition delays has also changed. The 90th percentile delay has dropped
from 1.7 seconds to half a second. Though the 10th percentile median delay is now over half a
negative second. This is seen when a transition starts partway through the resulting animation.

Keyframes per animation
Web Almanac 2022: CSS

desktop [l mobile

3
0

Percentile

Number of keyframes

N

Figure 1.47. Distribution of keyframes per animation.

We also looked at the average number of keyframes used per animation, and found one site
that used an astonishing 6,995 keyframes. This was unusual however, and even at the 90th
percentile, the number of keyframes per animation is five on both desktop and mobile.

2022 Web Almanac by HTTP Archive 43

https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-distribution.png
https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-distribution.png

Part | Chapter1: CSS

Most popular transition keyframes
Web Almanac 2022: CSS

desktop [l mobile

0% 22%
o 16%
100% 15%

from — 7%,
50% |— —— 6%
60% — — 59,
0% — 4%

80% |— 3%

20% | — 3%

75% — 3%

90% |— 2%

30% F 2%

25% P 1%
70% P 1%
10% F 1%
0% 5% 10% 15% 20% 25%

Keyframe

Percent of all keyframe occurrences

Figure 1.48. The most popular transition keyframes by percent of occurrences.

As you might expect the most popular stops are at 0% to and from 100%, followed by 50%.
Developers generally set these stops at 10% intervals, only 1% of pages use 33%, for example.

44 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-stops.png
https://almanac.httparchive.org/static/images/2022/css/transition-keyframe-stops.png

Part | Chapter1: CSS

Timing functions
Web Almanac 2022: CSS (mobile)
steps

2.8%
ease-in

5.2%
ease-out

ease

8.4%

cubic-bezier
16.4%

ease-in-out

31.8%

linear

17.5%

Figure 1.49. Distribution of timing functions.

17.9%

There has been little change in the distribution of timing functions used during transitions when

compared to 2021. As then, the clear leader is ease.

2022 Web Almanac by HTTP Archive

45

https://almanac.httparchive.org/static/images/2022/css/transition-timing-functions.png
https://almanac.httparchive.org/static/images/2022/css/transition-timing-functions.png

Part | Chapter1: CSS

Animation name categories
Web Almanac 2022: CSS

desktop [l mobile

unknown/other

13%
13%

rotate
bounce
slide
fade

wobble

Animation name

scale
pulse

visibility

0% 5% 10% 15%

Percent of occurrences

Figure 1.50. Types of animations as identified by animation name.

To understand what developers are using animations for, we took a look at the names used for
the animation classes. For example, anything with spin inthe class name is deemed to be
rotate. Rotate animations were the most popular, as in 2021. However the percentage has
dropped from 18% to 13%, with bounce animations moving from 5th place to 3rd place in the
list.

As last year, the high showing for unknown/other is due to a prevalence of the class name a,
which we can’t map to a specific animation type.

Visual Effects

18%

Figure 1.51. The percentage of pages using blend modes.

We looked at some visual effects being used in CSS. For example, 18% of desktop pages define

46 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/transition-animation-names.png
https://almanac.httparchive.org/static/images/2022/css/transition-animation-names.png

Part | Chapter1: CSS

stylesonthe background-blend-mode or mix-blend-mode properties.

blend-mode value

blend-mode values
Web Almanac 2022: CSS

desktop [l mobile

multiply 42%

overlay

33%

screen 33%
darken 32%
lighten 31%
soft-light 299%,
color 28%
color-burn 28%
color-dodge 28%
difference 21%
0% 10% 20% 30% 40%

Percent of pages that set blend-mode

Figure 1.52. Most popular blend modes used on pages that set blend mode.

The most frequently seen value for blend modes was multiply ,seenon 42% of pages.

However there is a fair distribution of other values too.

Around 18% of pages were using a custom property var(--overlay-mix-blend-mode) ,a

specific name that must come from a library or tool of some sort.

2022 Web Almanac by HTTP Archive

47

https://almanac.httparchive.org/static/images/2022/css/blend-mode-values.png
https://almanac.httparchive.org/static/images/2022/css/blend-mode-values.png

Part | Chapter1: CSS

filter functions
Web Almanac 2022: CSS

desktop [l mobile

alpha() 82%

none 59%

progid:DXImageTransform.
Microsoft.gradient(46%

DIUN) p——— 317,

grayscale(

)
)

drop-shadow() \— 22%,
) — 22%,
)

brightness() \u— 20%

progid:DXImageTransform. o
Microsoft.Basiclmage() [——— 16%

saturate() pes 11%

progid:DXImageTransform. o
Microsoft.AlphalmageLoa... " 10%

inherit() o 10%
) f— 8%
sepial() F 8%
contrast() P 8%
none limportant P 8%
0% 25% 50% 75% 100%

filter function

url(

Percent of pages that set filters

Figure 1.53. Most popular filter functions used on pages that set filters.

Of the percentage of pages that have set filters to apply graphical effects, 82% are using the
alpha() value, which is non-standard and used for Internet Explorer 8 and below. We also

see a high usage of the Microsoft.gradient() filter.

Of the standard values’, 31% of pages use blur() , making it the most popular value after

none .

7. https://developer.mozilla.org/docs/Web/CSS/filter

48 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/filter-functions.png
https://almanac.httparchive.org/static/images/2022/css/filter-functions.png
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms532997(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms532997(v=vs.85)
https://developer.mozilla.org/docs/Web/CSS/filter

Part | Chapter1: CSS

clip-path values
Web Almanac 2022: CSS
desktop [l mobile

inset()

88%
none
polygon()
var()

circle()

clip-path value

url()

ellipse()

0% 25% 50% 75% 100%

Percent of pages that set clip-path

Figure 1.54. Popular clip-path valuesin pagesthatset clip-path() .

In pages thatuse clip-path toclip an element, the vast majority are using inset() ,the
value that simply insets the box of the element, 88% of pages using clip-path have used this

function.

After that, and the value none , most developers have chosen touse polygon() ,whichisthe

value that gives the most flexibility to define your own path.

Responsive design

While many developers are eagerly anticipating container queries’, and new layout methods
such as flexbox and grid can often enable a design to work well on multiple screen sizes, media

queries’ are used in the majority of pages for responsive design.

When developers write media queries, they most often test the width of the viewport. max-
width and min-width were the most popular queries by far, the same as in 2020 and 2021.
There was no ranking change in the third and fourth place results either.

8. https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
9. https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries

2022 Web Almanac by HTTP Archive 49

https://almanac.httparchive.org/static/images/2022/css/clip-path-functions.png
https://almanac.httparchive.org/static/images/2022/css/clip-path-functions.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Container_Queries
https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/docs/Web/CSS/Media_Queries/Using_media_queries

Part | Chapter1: CSS

Media query features
Web Almanac 2022: CSS

desktop [l mobile

max-width 83%
min-width 79%
-webkit-min-device-pixel-ratio u————————— 35%,

prefers-reduced-motion | ————— 34%

orientation E—— —— 30%
max-device-Width a—— 26%
-ms-high-contrast e—
max-height e——— 23%
min-resolution | —
-webkit-transform-3d | 12%
transform-3d 12%

min-device-pixel-ratio

min-height |’ 11%,
min--moz-device-pixel-ratio

forced-colors 8%

P o

min-device-width F 8%

Media feature

prefers-color-scheme
-0-min-device-pixel-ratio 7%
hover ’_ 5%
pointer P 2%
0% 25% 50% 75% 100%

Percent of pages

Figure 1.55. Popular media query features.

The prefers-reduced-motion media query, however, which was noted in 2021 as rising in
the rankings, has now edged out orientation to take the fourth spot. This is due to a 2% rise
for prefers-reduced-motion butalsoadrop of 4% for orientation.

50 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/media-query-features.png
https://almanac.httparchive.org/static/images/2022/css/media-query-features.png

Part | Chapter1: CSS

prefers-* media query features
Web Almanac 2022: CSS
desktop [l mobile

prefers-reduced-motion 349
refers-color-scheme
. 8%

prefers-contrast 1%

Media feature

prefers-reduced-transparency 0%
(]

0% 10% 20% 30% 40%

Percent of pages

Figure 1.56. Use of user preference features by percent of pages.

If we just look at the prefers-* user preference features, we can see that prefers-
reduced-motion is by far the most popular, due to good browser support plus the prevalence
of animations and transitions on the web. The prefers-color-scheme feature, checking to
see if the user has set a preference for a light or dark scheme, has increased in use slightly, as

the use of dark mode on websites and applications becomes more popular.

2022 Web Almanac by HTTP Archive

51

https://almanac.httparchive.org/static/images/2022/css/prefers-features.png
https://almanac.httparchive.org/static/images/2022/css/prefers-features.png

Part | Chapter1: CSS

Media feature

hover media query features
Web Almanac 2022: CSS
desktop [l mobile

hover 5%
pointer 2%
any-pointer 0%
any-hover 0%
0% 2% 4% 6%

Percent of pages

Figure 1.57. Use of hover and pointer media features.

The hover and pointer mediafeatures help developers test the capabilities of the device,
and the way the user might be interacting with it. They are a better way to discover if a user is
using a touchscreen, for example, than screen size alone given the number of large tablets and

touchscreen laptops in use.

Both hover and pointer now appear inthe top ten features. The less useful any-pointer

and any-hover see very little use. Using any-pointer allows you to determine if a user has

access to a fine pointer such as a mouse or trackpad, even if pointer indicates they are
currently using the touchscreen. Asking a user to switch is definitely not ideal, though a
combination of these features could give you a good understanding of the environment a user is

working in.

52

2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/hover-features.png
https://almanac.httparchive.org/static/images/2022/css/hover-features.png

Part | Chapter1: CSS

Common breakpoints

Percent of pages

80%

60%

40%

20%

0%

Most popular breakpoints
Web Almanac 2022: CSS (mobile)

Bl min-width max-width
57%
32%
23%
i
39% o
51% 25%
35% 39% 38%
’ ’ 25% 29% 26% o,
12% 13% °

480px 600px 767px 768px 782px 800px 991px 992px 1024px 1200px

Breakpoint

Figure 1.58. Distribution of the most popular breakpoints.

As in the past two years, common breakpoints have changed little. The chart follows the same

shape, and the most common breakpoint being a max-width of 767pxand min-width of

768px. As noted in 2021, this corresponds with an iPad in portrait mode.

Once again, breakpoints are overwhelmingly set in pixel values, we haven’t converted other

values to pixels for the chart. The first em value is again 48em , found at position 78.

Properties changed in queries

We looked at the properties that appear within media query blocks, to see which properties

people were changing based on breakpoint.

2022 Web Almanac by HTTP Archive

53

https://almanac.httparchive.org/static/images/2022/css/media-query-breakpoints.png
https://almanac.httparchive.org/static/images/2022/css/media-query-breakpoints.png

Part | Chapter1: CSS

Most popular properties used in media queries
Web Almanac 2022: CSS

desktop [l mobile

display 83%
width 83%
height 78%
padding 78%
margin-left 77%
font-size 76%
margin 75%
position 75%
margin-right 74%
z left 74%
g top 74%
~ margin-top 74%
max-width 74%
right 73%
margin-bottom 73%
padding-left 72%
text-align 71%
padding-right 70%
background 69%
float 67%
0% 25% 50% 75% 100%

Percent of pages

Figure 1.59. Most popular properties found in media query blocks.

The display property is still top of the chart for properties changed within media queries,
however there has been some reshuffling in the rankings. These are not as dramatic as they
might seem. The color property has vanished from the chart, however this only represents a
change from 74% to 67%. It is joined however by a reduction in usage of background-color
for 65% to 63%, which makes us wonder if some framework, or perhaps WordPress has

stopped using this in a stylesheet.

Another interesting point to note is thatin 2020 font-size appearedin 73% of media

54 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/media-query-props.png
https://almanac.httparchive.org/static/images/2022/css/media-query-props.png

Part | Chapter1: CSS

blocks, and was fifth on the list. In 2021, it showed up in 60% of blocks, appearing at 12th. This
year it has gained ground, back to 76% and sixth place.

Feature Queries

Features queries, used for testing for support of a CSS feature, were found on 40% of mobile
pages and 38% of desktop pages. This was down from a figure of 48% in 2021. This may indicate
that support for common features tested has become great enough for people not to worry
about testing for the feature before use.

The number of feature query blocks per page is 4 at the 75th percentile, and at the 90th
percentile 7 for desktop and 8 for mobile. We did find one site however with 1,722 feature
query blocks.

Most popular features queried
Web Almanac 2021: CSS
desktop [l mobile

0
40% 36%

30%
20%

20%
11%

oo 5% 5% 5%

3% 2% 1% 1%

0%

Percent of @supports occurrences

. @ * oy o0 ‘ e .22 =
%\\6*3 ‘\;\@'4‘9 ‘Gq>\\°0 e,'o\‘g) o‘o\\\(‘g e,d(fa“o OQB(\‘?’ .\eo\’“ (((o*Q
@° o A W % o
« i) \@(\\o 2 5\0‘“
() oW
Feature

Figure 1.60. Most popular features tested for with feature queries.

As with last year, the most popular feature tested for in feature queries was position:
sticky , however this has fallen from 53% to 36% of occurrences, perhaps due to the improved
browser support for this feature.

Non-standard features show up strongly in these tests, with touch-callout (-webkit-
touch-callout)and ime-align (-ms-ime-align). The former has grown in usage from
5% to 11%, while ime-align hasdropped from 7% to 5%.

2022 Web Almanac by HTTP Archive 55

https://almanac.httparchive.org/static/images/2022/css/supports-features.png
https://almanac.httparchive.org/static/images/2022/css/supports-features.png

Part | Chapter1: CSS

@supports properties
Web Almanac 2021: CSS

desktop [l mobile

object-fit 27%
content 26%
background-attachment 25%
border-radius 24%
mask-size 24%
mask-image 24%
mask-repeat 24%
mask-position 24%
mask-mode 24%
2 -webkit-mask-image 24%
[
E— -webkit-mask-size 23%
* -webkit-mask-repeat 23%
-webkit-mask-position 23%
-o-object-fit 23%
display 17%
width 15%
height 13%
flex 1%
justify-content 10%
align-items 10%
0% 10% 20% 30%

Percent of pages

Figure 1.61. Properties used inside feature query blocks by percent of pages.

Having tested for support, which properties are then used inside these feature query blocks?
The object-fit property came out top, the mask-* properties making a good showing,
along with their -webkit-mask-* counterparts. This is likely due to the lack of
interoperability for masking until recently, with the properties still requiringa -webkit prefix

for Chrome.

56 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/supports-props.png
https://almanac.httparchive.org/static/images/2022/css/supports-props.png

Part | Chapter1: CSS

While the display property features in the top 20, you have to go a long way down the list to
find any grid properties. The grid-template-columns property being found in 2% of
feature query blocks.

Internationalization

English is described as a horizontal top to bottom language, because sentences are written
horizontally, starting at the top of the page. The script direction runs left-to-right (LTR). Arabic,
Hebrew, and Urdu are also horizontal top to bottom languages, but have a script direction of
right-to-left (RTL). There are also languages that are written vertically, from top to bottom, such
as Chinese, Japanese, and Mongolian. CSS has evolved to better cope with these different
writing modes and script directions.

Direction

The number of pages using the direction property to set CSS either onthe <body> or
<html> element remained unchanged from 2021, with 11% of pages setting it on <html>
and 3% on <body> . It's recommended to use HTML”, rather than CSSto set direction,soa

lower number here matches that best practice.

Logical and physical properties

Logical or flow-relative properties such as border-block-start andvaluessuchas start
for text-align are useful for internationalization, as they follow the flow of text rather than
being tied to the physical dimensions of the screen. Browser support for these properties is
now excellent, so we wondered whether we would see more adoption.

10. https://wwww3.org ional, ions/qa-html-di

2022 Web Almanac by HTTP Archive 57

https://www.w3.org/International/questions/qa-html-dir

Part | Chapter1: CSS

Logical property and value usage
Web Almanac 2022: CSS (mobile)

Z‘gser text-align
o 12.6%
padding ’
1.2%
margin
70.0%

Figure 1.62. The distribution of logical properties used.

Logical property usage has increased slightly from 2021, up from 4% to 5%. However, the chart
for 2022 looks very different to the one for 2021. Overwhelmingly, people are using logical
properties to set margin properties, up to 70% from 26%. The most popular margin
properties are margin-inline-start and margin-inline-end ,found on 9% of total
pages. These are particularly useful for making sure that spacing between a label and following
field, for example, works in the same way in a LTR and RTL script.

Ruby

Once again we checked for usage of CSS Ruby”, a collection of properties used for interlinear
annotation, which are short runs of text alongside the base text.

0.2%

Figure 1.63. The percentage of mobile pages using CSS Ruby.

Its usage is still tiny, but has increased from 2021. In only 8,157 desktop pages and 9,119
mobile pages were found to be using it—less than 0.1% of all pages analyzed. This year, 16,698
desktop and 21,266 mobile pages—or 0.2% of all pages analyzed—were using it.

11. https://developer.mozilla.org/docs/Web/CSS/CSS_Ruby

58 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/logical-props.png
https://almanac.httparchive.org/static/images/2022/css/logical-props.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Ruby

Part | Chapter1: CSS

CSSinJs

CSS in JS libraries
Web Almanac 2022: CSS (mobile)

Styled Jsx
2.4%

Aphrodite

5.0%

Glamor /

7.7%

Goober

10.9% Styled Components
49.4%

Emotion

22.9%

Figure 1.64. Usage of CSS in JS libraries.

The use of CSS-in-JS has not increased from last year, staying at 3%. This usage is almost all
from libraries, the most popular of which is Styled Components. This library has dropped in
share from 57% to 49%, with a new library entering the mix at almost 11%. Goober* describes
itself as “a less than 1KB css-in-js solution”, and is certainly making some inroads among people
who like this type of thing.

Houdini

There is still very little usage of Houdini” on the open web. Looking at the number of pages
using animated custom properties shows only a small increase since 2021. We also looked at
usage of the Houdini Paint API. We do find instances of this in use on the web. By looking at the
names of worklets used, much of this is the smooth corners” worklet, indicating that people are
using it as a progressive enhancement, given that this can fall back nicely to aregular border-

radius .

12. https://goober,s.org/
13. https://developer.mozilla.org/docs/Web/CSS/CSS_Houdini
14. https://css-houdini.rocks/smooth-corners/

2022 Web Almanac by HTTP Archive 59

https://almanac.httparchive.org/static/images/2022/css/css-in-js.png
https://almanac.httparchive.org/static/images/2022/css/css-in-js.png
https://goober.js.org/
https://developer.mozilla.org/docs/Web/CSS/CSS_Houdini
https://css-houdini.rocks/smooth-corners/

Part | Chapter1: CSS

Sass

Preprocessors like Sass can be seen as a good indicator of what developers want to be able to
do with CSS, but can’t. And, with CSS increasing in power, a common question from developers
is whether we need to use Sass at all. We can see from the rise in custom properties usage, that
one common preprocessor use—the ability to have variables or constants—now has a built-in
CSS equivalent.

Most popular Sass function calls
Web Almanac 2022: CSS

desktop [l mobile

if

(other)
darken
map-get
map-keys
percentage
nth

lighten

Function name

mix

type-of

(alpha adjustment)
unit

length

0% 5% 10% 15% 20%

Percent of function calls

Figure 1.65. Most popular Sass function calls by percent of calls.

Looking at the function calls shows that color functions are still a very popular use of Sass,
something that may well soon be replaced with new CSS color functions”such as color-
mix () . There are some changes from last year. The darken function has dropped 2
percentage points to 14% and third place. The lighten function has, however, gained a
points.

15. https://www.w3.0rg/TR/css-color-5/

60 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/sass-function-calls.png
https://almanac.httparchive.org/static/images/2022/css/sass-function-calls.png
https://www.w3.org/TR/css-color-5/

Part | Chapter1: CSS

Usage of control flow statements in SCSS
Web Almanac 2022: CSS

desktop [l mobile

80% %
65%
o 60% 60%
§ 60%
=
3
8 40%
®
a
k]
T 1
8 20% 7%
[
o
0%
@for @each @wh|le

Control flow statement

Figure 1.66. Distribution of control flow statements on SCSS.

Looking at control flow statements we see a small increase in @for and @each , however
@while hasincreased from 2% to 7%.

2022 Web Almanac by HTTP Archive 61

https://almanac.httparchive.org/static/images/2022/css/sass-control-flow-statements.png
https://almanac.httparchive.org/static/images/2022/css/sass-control-flow-statements.png

Part | Chapter1: CSS

Usage of explicit nesting in SCSS
Web Almanac 2022: CSS

desktop [l mobile

Total 88%
&:pseudo-class 85%

&.class 81%
&::pseudo-element 70%

& (by itself) 65%
$[attr] 599,

e ——— 31%

Nested selector

& descendant o — 25%,
&= 24%
&~ 5%
&#id F 5%
0% 25% 50% 75% 100%

Percent of pages with SCSS
Figure 1.67. Use of explicit nesting in SCSS by percent of pages using SCSS.

Nesting is also interesting, given that a future spec for CSS Nesting is currently in development
and discussion at the CSS Working Group. Nesting in SCSS sheets is very common, and can be
identified by looking for the & character. As with last year pseudo-classes such as :hover,
and classes such as .active make up most cases of nesting. All usage increased slightly,
however & descendent increased 7 percentage points from 18% to 25%. Implicit nesting is
not measured in this survey, as it does not use special characters.

CSS for print

Figure 1.68. The percentage of desktop pages with print-specific styles.

We wondered whether developers were creating print stylesheets to provide a better printed

experience, and only 5% of desktop and 4% of mobile sites were doing so.

62 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/sass-nesting.png
https://almanac.httparchive.org/static/images/2022/css/sass-nesting.png

Part | Chapter1: CSS

Top print stylesheet properties
Web Almanac 2022: CSS

desktop [l mobile

display 55%
margin 48%
color 47%
width 43%
%. background 42%
§ padding 39%
text-decoration 39%
font-size 37%
text-align 36%
content 34%
0% 20% 40% 60%

Percent of pages with print stylesheets

Figure 1.69. The top properties found in print styles on pages that have a print stylesheet.

Of the pages using print styles, over half changed the value of display —perhaps to simplify a
grid or flex layout for print. We also see people changing colors, tweaking margin and padding,
and settingthe font-size.At34%isthe content property,used toinsert generated

content.

Print is a fragmented medium; the content is fragmented into pages, and we have a set of
fragmentation properties that aim to give some control over how these breaks happen. For
example, developers usually want to avoid a heading being the last thing on a page, or a caption

being disconnected from the figure it relates to.

2022 Web Almanac by HTTP Archive

63

https://almanac.httparchive.org/static/images/2022/css/print-props.png
https://almanac.httparchive.org/static/images/2022/css/print-props.png

Part | Chapter1: CSS

Interesting print stylesheet properties
Web Almanac 2022: CSS

desktop [l mobile

page-break-inside

32%
age-break-after
pag 30%

>
£

g orphans
<
a

page-break-before

break-after

0% 10% 20% 30% 40%

Percent of pages with print stylesheets
Figure 1.70. Fragmentation properties used in print stylesheets.

We see in this chart that many developers are using the old fragmentation properties of page-
break-inside, page-break-after,and page-break-before,rather thanthe new

properties such as break-before , which has very low usage.

The orphans property appears in 22% of print stylesheets, despite lacking support in Firefox.
This property defines the number of lines that should be left at the bottom of a page before a
fragmentation break. The widows property (which sets the number of lines on their own after
afragmentation break) is seen with around the same frequency. It is likely that people are

setting the same value for both.

Paged media

There is an entire specification for dealing with Paged Media, and CSS for print. However, this
has been poorly implemented in browsers. To find a good implementation of these features you

need to use a print-specific user agent.

There is some browser support for the @page rule and its pseudo-classes, and we did find
developers using these to set different page properties for the first page, and the left and right

pages of a spread.

64 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/print-fragmentation-props.png
https://almanac.httparchive.org/static/images/2022/css/print-fragmentation-props.png
https://developer.mozilla.org/docs/Web/CSS/@page
https://developer.mozilla.org/docs/Web/CSS/@page

Part | Chapter1: CSS

Pseudo-class

:first
:right

rleft

Desktop Mobile

Figure 1.7 1. Number of pages found using @page spread pseudo-classes.

Of people using these pseudo-classes, usage was mostly to set the page margins, and also the

size of the page.

Meta

This section rounds up some general information about CSS usage, for example how often

declarations are repeated, and common mistakes in CSS.

Declaration repetition

In 2020 and 2021, analysis was done to determine the amount of “declaration repetition”. This

aims to identify how efficient a stylesheet is by looking for the number of declarations using the

same property and value.

2022 Web Almanac by HTTP Archive

65

Part | Chapter1: CSS

Declaration repetition
Web Almanac 2022: CSS
desktop [l mobile

o 80%

&

g 61%
o o,

o 60% 53%

5 45%

g 38%

T 40% 32%

kel

[}

=

g

S 20%

°

=

Q

<

o) 0%

& 10 25 50 75 90

Percentile

Figure 1.72. Distribution of repetition.

In 2021 it was reported there was a slight drop in repetition, this year there is a slight rise. This
metric does therefore seem fairly stable year-on-year.

Shorthands and longhands

In CSS, a shorthand property is one that can set a number of longhand properties in one
declaration. For example, the shorthand property background can be used to set all of the
following longhand properties:

e background-attachment
e background-clip

e background-color

e background-image

e background-origin

e background-position

e background-repeat

e background-size

66 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/repetition.png
https://almanac.httparchive.org/static/images/2022/css/repetition.png

Part | Chapter1: CSS

When developers mix shorthand properties like background and longhand properties like
background-size inastylesheet, it is always best to have the longhands come after the
shorthands. We looked at instances of this to see which longhands were most common.

Most popular longhand properties after shorthands
Web Almanac 2022: CSS

desktop [l mobile

background-size 15%

background-image 6%
font-size — 59,
margin-bottom — 5%,

margin-top — 5%,

Property

border-bottom-Color | — 5%,
line-height |o— 4%
border-top-color e — 4%
margin-lefl | 4%

padding-left i — 3%

0% 5% 10% 15% 20%

Percent of occurrences

Figure 1.73. The most popular longhand properties that come after shorthands.

Asin 2020 and 2021, background-size came out top of the chart, and there was little
difference to be seen from 2021.

Unrecoverable syntax errors

As in previous years, we use the Rework* engine for CSS parsing. An unrecoverable error is one
where the error is so bad, the full stylesheet is unable to be parsed by Rework. Last year, 0.94%
of desktop pages, and 0.55% of mobile pages contained an unrecoverable error. This year, 13%
of desktop and 12% of mobile pages had such an error. This seems like a large jump, however
due to some changes in methodology (adding size thresholds) it is likely that not all of the

instances are unrecoverable errors.

16. https://github.com/reworkcss/css

2022 Web Almanac by HTTP Archive 67

https://almanac.httparchive.org/static/images/2022/css/shorthand-first-props.png
https://almanac.httparchive.org/static/images/2022/css/shorthand-first-props.png
https://github.com/reworkcss/css

Part | Chapter1: CSS

Nonexistent properties

As in previous years we checked for declarations that had valid syntax, but referred to
properties that don’t actually exist. This includes spelling errors, malformed vendor prefixes,
and things developers have just made up.

Most popular unknown properties
Web Almanac 2022: CSS

desktop [l mobile

-archetype 1%

font-smoothing 10%

behavior 10%

tap-highlight-color 6%

moz-transition 5%

margin-center 4%

box-fleX e — 39,

webkit-transition —— 3%,

Unknown property

url-encoded |y (9%,
border-colapse |y (9,
webkit-border-radius
moz-border-radius

enable-background

0% 3% 5% 8% 10% 13%

Percent of pages

Figure 1.74. The most frequently seen unknown properties.

The top mystery property is -archetype , which is now appearingin 11% of cases of
stylesheets with nonexistent properties. This property has jumped from 4% last year to 11% to
take the top spot. The second property is font-smoothing with adrop of 4% points from last
year. This appears to be an unprefixed version of -webkit-font-smoothing that does not
actually exist. The use of the malformed webkit-transition (whichshould be -webkit-
transition) hasdropped from 14% to 3%. This makes us think it was perhaps getting into a
large number of stylesheets via a framework or other third party that has since been updated to
fix the problem.

68 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/css/unknown-props.png
https://almanac.httparchive.org/static/images/2022/css/unknown-props.png

Part | Chapter1: CSS

Conclusion

CSS continues to evolve at a rapid pace, however we can see from the data that new features
are adopted quite slowly, even when they have been in all major engines for several years.
There are a few highly requested features, such as container queries, landing in browsers as of
this writing. It will be interesting to see whether the uptake for these features will match the

demand for them.

Something that has been apparent in this data is how much popular platforms, in particular
WordPress, can impact usage statistics. We can see WordPress class and custom property
names clearly in the data, but what is harder to see are the properties and values used by
classes added to the majority of WordPress sites. If WordPress adopts a new feature, as part of

one of these standard classes, we should expect to see a sudden uptick in usage.

As noted in last year’s conclusion, the data tells a story of gradual, steady adoption of new
features (such as grid layout) or best practices (such as using logical rather than physical
properties). We look forward to seeing how these changes develop in the years to come.

Author

Rachel Andrew

X @rachelandrew € rachelandrew @ https://rachelandrew.co.uk

Rachel Andrew works for Google as a technical writer, working on web.dev” and
the Chrome Developers site®. She is a front and back-end web developer, author
and speaker, author or co-author of 22 books including The New CSS Layout” and
aregular contributor to a number of publications both on and offline. Rachel is a
Member of the CSS Working Group, and can be found posting photos of her cats
on Twitter as @rachelandrew.

17. https://web.dev
18. https://developer.chrome.com/
19. https://abookapart.com/products/the-new-css-layout

2022 Web Almanac by HTTP Archive 69

https://x.com/rachelandrew
https://github.com/rachelandrew
https://rachelandrew.co.uk/
https://web.dev/
https://developer.chrome.com/
https://abookapart.com/products/the-new-css-layout
https://x.com/rachelandrew

70

2022 Web AlImanac by HTTP Archive

Part | Chapter 2 : JavaScript

Partl Chapter 2
JavasScript

Written by Jeremy Wagner

Reviewed by Minko Gechev, Pankaj Parkar, Nishu Goel, Houssein Djirdeh, Kevin Farrugia, and Barry
Pollard

Analyzed by Nishu Goel and Kevin Farrugia

Edited by Abel Mathew and Rick Viscomi

Introduction

JavaScript is a powerful force that provides the lion’s share of interactivity on the web. It drives
behaviors from the simple to the complex, and is making more things possible on the web than

ever before.

Yet, the increased usage of JavaScript to deliver rich user experiences comes at a cost. From the
moment JavaScript is downloaded, parsed, and compiled, to every line of code it executes, the
browser must orchestrate all kinds of work to make everything possible. Doing too little with
JavaScript means you might fall short of fulfilling user experience and business goals. On the
other hand, shipping too much on JavaScript means you will be creating user experiences that
are slow to load, sluggish to respond, and frustrating to users.

This year, we'll once again be looking at the role of JavaScript on the web, as we present our
findings for 2022 and offering advice for creating delightful user experiences.

2022 Web Almanac by HTTP Archive 7

Part | Chapter 2: JavaScript

How much JavaScript do we load?

To begin, we'll assess the amount of JavaScript web developers ship on the web. After all, before
improvements can be made, an assessment of the current landscape must be performed.

Distribution of JavaScript kilobytes per page
Web Almanac 2022: JavaScript
desktop [l mobile

2,000
1,367

1,500
S
&
& 1,000 857
2
_é‘ 461
¥4 500 209

0 | -
10 25 50 75 90

Percentile

Figure 2.1. Distribution of the amount of JavaScript loaded per page.

As was the case last year, this year marks yet another increase in the amount of JavaScript
shipped to browsers. From 2021” to 2022, an increase of 8% for mobile devices was observed,
whereas desktop devices saw an increase of 10%. While this increase is less steep than in
previous years, it’s nonetheless the continuation of a concerning trend. While device
capabilities continue to improve, not every one is running the latest device. The fact remains
that more JavaScript equates to more strain on a device’s resources.

20. ive.org/en/2021/javascripi h-javascript-d load

72 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/bytes-per-page.png
https://almanac.httparchive.org/static/images/2022/javascript/bytes-per-page.png
https://almanac.httparchive.org/en/2021/javascript#how-much-javascript-do-we-load

Part | Chapter 2 : JavaScript

Distribution of unused JavaScript
Web Almanac 2022: JavaScript
desktop [l mobile

800
5 604
» 600
[
>
&
°
S 400 342
3
5
5 162
2 200
.§ 62
S 0
4

0 [|
10 25 50 75 90
Percentile

Figure 2.2. Distribution of the amount of unused JavaScript bytes.

According to Lighthouse™, the median mobile page loads 162 KB of unused JavaScript. At the
90th percentile, 604 KB of JavaScript are unused. This is a slight uptick from last year, where
the median and 90th percentile of unused JavaScript was 155 KB and 598 KB, respectively. All
of this represents a very large amount of unused JavaScript, especially when you consider that
this analysis tracks the transfer size of JavaScript resources which, if compressed, means that
the decompressed portion of used JavaScript may be a lot larger than the chart suggests.

When contrasted with the total number of bytes loaded for mobile pages at the median, unused
JavaScript accounts for 35% of all loaded scripts. This is down slightly from last year’s figure of
36%, but is still a significantly large chunk of bytes loaded that go unused. This suggests that
many pages are loading scripts that may not be used on the current page, or are triggered by
interactions later on in the page lifecycle, and may benefit from dynamic import() toreduce
startup costs.

JavaScript requests per page

Every resource on a page will kick off at least one request, and possibly more if a resource
makes additional requests for more resources.

Where script requests are concerned, the more there are, the more likely you'll not just load

21. https//web.dev/unused-javascript/

2022 Web Almanac by HTTP Archive 73

https://almanac.httparchive.org/static/images/2022/javascript/unused-js.png
https://almanac.httparchive.org/static/images/2022/javascript/unused-js.png
https://web.dev/unused-javascript/

Part | Chapter 2: JavaScript

more JavaScript, but also increase contention between script resources that may bog down the
main thread, leading to slower startup.

Distribution of JavaScript requests per page
Web Almanac 2022: JavaScript
desktop [l mobile

80
60

60
Q
(=]
g
5 37
Q 40
2
w
8 21
g
¥ 20 10

. I
. — []
10 25 50 75 90

Percentile

Figure 2.3. Distribution of the number of JavaScript requests per page.

In 2022, the median mobile page responded to 21 JavaScript requests, whereas at the 90th
percentile, there were 60. Compared to last year, this is an increase of 1 request at the median
and 4 requests at the 90th percentile.

Where desktop devices in 2022 are concerned, there are 22 JavaScript requests at the median,
and 63 at the 90th percentile. Compared to last year, this is an increase of 1 JavaScript request
at the median, and 4 at the 90th percentile—the same increase as noted for mobile devices.

While not a large increase in the number of requests, it does continue the trend of increased
requests year over year since the Web Almanac’s inception in 2019.

How is JavaScript processed?

Since the advent of JavaScript runtimes such as Node.js, it has become increasingly common to
rely on build tools in order to bundle and transform JavaScript. These tools, while undeniably
useful, can have effects on how much JavaScript is shipped. New to the Web Almanac this year,

we're presenting data on the usage of bundlers and transpilers.

74 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/requests-per-page.png
https://almanac.httparchive.org/static/images/2022/javascript/requests-per-page.png

Part | Chapter 2 : JavaScript

Bundilers

JavaScript bundlers are build-time tools that process a project’s JavaScript source code and
then apply transformations and optimizations to it. The output is production-ready JavaScript.
Take the following code as an example:

function sum (a, b) {

return a + b;

A bundler will transform this code to a smaller, but more optimized equivalent that takes less
time for the browser to download:

function n(n,r){return n+r}

Given the optimizations bundlers perform, they are a crucial part of optimizing source code for
better performance in production environments.

There are a wealth of choices when it comes to JavaScript bundlers, but one that pops into mind
often is webpack®. Fortunately, webpack’s generated JavaScript contains a number of
signatures (webpackJsonp , for example) that make it possible to detect if a website’s
production JavaScript has been bundled using webpack.

22. https//webpack.js.org/

2022 Web Almanac by HTTP Archive 75

https://webpack.js.org/

Part | Chapter 2: JavaScript

Pages using webpack grouped by rank
Web Almanac 2022: JavaScript

desktop [l mobile

1,000 17%
10,000 15%

= 100,000
3]
x

1,000,000

all 5%,
0% 5% 10% 15% 20%

Percentage of pages using webpack

Figure 2.4. Pages that use webpack-bundled JavaScript by rank.

Of the 1,000 most popular websites, 17% use webpack as a bundler. This makes sense, as many
of the top pages HTTP Archive crawls are likely to be high-profile ecommerce sites that use
webpack to bundle and optimize source code. Even so, the fact that 5% of the all pages in the

HTTP Archive dataset use webpack is a significant statistic. However, webpack isn’'t the only
bundler in use.

76 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/webpack-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/webpack-rank.png

Part | Chapter 2 : JavaScript

Pages using Parcel grouped by rank
Web Almanac 2022: JavaScript
desktop [l mobile

1.000 1.3%

10,000 1_9%
= 100,000
©
14
1,000,000 1.2%
al 1.3%
0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

Percentage of pages using Parcel

Figure 2.5. Pages that use Parcel-bundled JavaScript by rank.

Parcel” is a noteworthy alternative to webpack, and its adoption is significant. Parcel’s adoption
is consistent across all ranks, accounting for a range of 1.2% to 1.9% across rankings.

While HTTP Archive is unable to track the usage of all bundlers in the ecosystem, bundler usage
is significant in the overall picture of JavaScript in that they’re not only important to the
developer experience, but the overhead they can contribute in the form of dependency
management code can be a factor in how much JavaScript is shipped. It's worth checking how
your overall project settings are configured to produce the most efficient possible output for
the browsers your users use.

Transpilers

Transpilers are often used in toolchains at build-time to transform newer JavaScript features
into a syntax that can be run in older browsers. Because JavaScript has evolved rapidly over the
years, these tools are still in use. New to this year’s Web Almanac is an analysis of the usage of
Babel” in delivering widely compatible, production-ready JavaScript. The singular focus on
Babel specifically is due to its wide usage in the developer community over alternatives.

23. https://parceljs.org/
24. https://babeljs.io/

2022 Web Almanac by HTTP Archive 77

https://almanac.httparchive.org/static/images/2022/javascript/parcel-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/parcel-rank.png
https://parceljs.org/
https://babeljs.io/

Part | Chapter 2: JavaScript

Pages using Babel grouped by rank
Web Almanac 2022: JavaScript

desktop [l mobile

1,000 40%
10,000 400/0
= 100,000
©
[va
1,000,000 23%
al 26%
0% 10% 20% 30% 40% 50%

Percentage of pages using Babel

Figure 2.6. Pages that use Babel by rank (of pages with source maps).

These results are not a surprising development when you consider how much JavaScript has
evolved over the years. In order to maintain broad compatibility for a certain set of browsers,

Babel uses transforms® to output compatible JavaScript code.

Transforms are often larger than their untransformed counterparts. When transforms are
extensive or duplicated across a codebase, potentially unnecessary or even unused JavaScript

may be shipped to users. This can adversely affect performance.

Considering that even 26% of pages ranked in the top million are transforming their JavaScript
source code using Babel, it's not unreasonable to assume that some of these experiences may
be shipping transforms they don’t need. If you use Babel in your projects, carefully review
Babel’s available configuration options* and plugins to find opportunities to optimize its output.

Since Babel also relies on Browserslist” to figure out whether it needs to transform certain
features to a legacy syntax, be sure to also review your Browerslist configuration to ensure that

your code is transformed to work in the browsers your users actually use.

How is JavaScript requested?

The manner in which JavaScript is requested may also have performance implications. There

oo

25, ps://babeljs.io/docs/en/babel-pl
26. https://babeljs.io/docs/en/options
27. i i list

78 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/babel-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/babel-rank.png
https://babeljs.io/docs/en/babel-plugin-transform-runtime#why
https://babeljs.io/docs/en/options
https://github.com/browserslist/browserslist

Part | Chapter 2 : JavaScript

are optimal ways you can request JavaScript, and in some cases, there are far less optimal
methods. Here, we'll see how the web is shipping JavaScript overall, and how that aligns with
performance expectations.

async, defer, module,and nomodule

The async and defer attributes onthe HTML <script> element control the behavior of
how scripts load. The async attribute will prevent scripts from blocking parsing, but will
execute as soon as they are downloaded, so may still block rendering. The defer attribute will
delay execution of scripts until the DOM is ready so should prevent those scripts from blocking
both parsing and rendering.

The type="module" and nomodule attributes are specific to the presence (or absence) of
ES6 modules being shipped to the browser. When type="module" isused, the browser
expects that the content of those scripts will contain ES6 modules, and will defer the execution
of those scripts until the DOM is constructed by default. The opposite nomodule attribute
indicates to the browser that the current script does not use ES6 modules.

Feature Desktop Mobile
async 76% 76%
defer 42% 42%
asyncanddefer 28% 29%
module 4% 4%
nomodule 0% 0%

Figure 2.7. Percentage of pages using async , defer, async and defer, type="module" ,
and nomodule attributeson <script> elements.

It's encouraging that 76% of mobile pages load scripts with async , as that suggests developers
are cognizant of the effects of render blocking. However, such a low usage of defer suggests
that there are opportunities being left on the table to improve rendering performance.

As noted last year”, using both async and defer isan antipattern that should be avoided as
the defer partisignored and async takes precedence.

The general absence of type="module" and nomodule is not surprising, as few pages seem

28. https://almanac.httparchive.org/en/2021/javascript#async-and-defer

2022 Web Almanac by HTTP Archive 79

https://almanac.httparchive.org/en/2021/javascript#async-and-defer

Part | Chapter 2: JavaScript

to be shipping JavaScript modules. As time goes on, the usage of type="module" in particular
may increase, as developers ship untransformed JavaScript modules to the browser.

Looking at the percentage of overall scripts across all the sites, presents a slightly different
view:

Feature Desktop Mobile
async 49.3% 47.2%
defer 8.8% 9.1%
asyncanddefer 3.0% 3.1%
module 0.4% 0.4%
nomodule 0% 0%

Figure 2.8. Percentage of scripts using async, defer, async and defer, type="module" ,
and nomodule attributeson <script> elements.

Here we see a much smaller use of both async and defer .Some of these scripts may be
being inserted dynamically after the initial rendering, but it’s also likely a good proportion of
pages are not setting these attributes on a lot of their scripts that are included in the initial
HTML and so are delaying rendering.

preload, prefetch,and modulepreload

Resource hints such as preload, prefetch,and modulepreload areuseful in hinting to

the browser which resources should be fetched early. Each hint has a different purpose, with
preload used to fetch resources needed for the current navigation, modulepreload the

equivalent for preloading scripts that contain JavaScript modules”, and prefetch used for

resources needed in the next navigation.

29. https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules

80 2022 Web AlImanac by HTTP Archive

https://developer.mozilla.org/docs/Web/JavaScript/Guide/Modules

Part | Chapter 2 : JavaScript

Resource hint Desktop Mobile

preload 16.4% 15.4%
prefetch 1.0% 0.8%
modulepreload 0.1% 0.1%

Figure 2.9. Percentage of pages using various resource hints.

Analyzing the trend of resource hint adoption is tricky. Not all pages benefit from them, and it’s
unwise to make a blanket recommendation to use resource hints broadly, as their overuse has
their own consequences—especially where preload is concerned. However, the relative
abundance of preload hintson 15% of mobile pages suggests that many developers are
aware of this performance optimization, and are trying to use it to their advantage.

prefetch istricky to use, though it can be beneficial for long, multi-page sessions. Even so,

prefetch isentirely speculative, so much so that browsers may ignore it in certain conditions.
This means some pages may waste data by requesting resources which go unused. It really “just
depends”.

The lack of use of modulepreload makes sense, since adoption of the type="module"
attribute on <script> elements is similarly low. Even so, apps that ship JavaScript modules
without transformations could benefit from this resource hint, as it will not fetch just the

named resource, but the entire module tree. This could help in certain situations.

Let’s dig into an analysis of how many of each resource hint type is used.

2022 Web Almanac by HTTP Archive 8l

https://blog.webpagetest.org/posts/removing-unused-preloads-on-festival-foods/
https://blog.webpagetest.org/posts/removing-unused-preloads-on-festival-foods/

Part | Chapter 2: JavaScript

Distribution of prefetch adoption for JavaScript
resources per page
Web Almanac 2022: JavaScript
desktop [l mobile

20
16

@
E 15
Q
(&)
3
2 10 7
‘5
g 3
§ 1

) — [[|

10 25 50 75 90

Percentile
Figure 2.10. Distribution of prefetch adoption for JavaScript resources per page.

Adoption of prefetch hereissomewhat surprising, with three prefetch hints for
JavaScript resources per page. However, the number of these hints at the 75th and 90th
percentiles suggests that there may be a fair amount of waste in the form of unused resources
for page navigations that never occur.

Distribution of preload adoption for JavaScript
resources per page
Web Almanac 2022: JavaScript

desktop [l mobile

3
2
1 I
|
0 . .

10

Number of resource hints

Percentile

Figure 2.11. Distribution of preload adoption for JavaScript resources per page.

82 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/prefetch.png
https://almanac.httparchive.org/static/images/2022/javascript/prefetch.png
https://almanac.httparchive.org/static/images/2022/javascript/preload.png
https://almanac.httparchive.org/static/images/2022/javascript/preload.png

Part | Chapter 2 : JavaScript

Remember—this analysis tracks how many resource hints are used for JavaScript resources on
pages that use one or more preload hints. The median page is delivering two preload hints
for JavaScript, which isn’t bad on its face, but it often depends on the size of the script, how
much processing scripts can kick off, or whether the script fetched via preload iseven

needed for the initial page load.

Unfortunately, we see five preload hints for JavaScript resources at the 90th percentile,
which may be too much. This suggests that pages at the 90th percentile are especially reliant on
JavaScript, and are using preload to try and overcome the performance issues that result.

Distribution of modulepreload adoption for
JavaScript resources per page

Web Almanac 2022: JavaScript
desktop [l mobile

20
£ 14
-_g 15
@
(3]
5
g 10 6
6
@
a 5 2
E 1 1

0 | | -
10 25 50 75 90

Percentile

Figure 2.12. Distribution of modulepreload adoption for JavaScript resources per page.

With modulepreload , we see a staggering 6 hints at the 75th percentile, and 14 at the 90th
percentile! This suggests that, while pages using one or more modulepreload hints at upper
percentiles are shipping untransformed ES6 modules directly to the browser, the need for so
many resource hints suggests an overreliance on JavaScript at the upper range.

Resource hints are great tools for optimizing how we load resources in the browser, but if
there’s one piece of advice you can heed when using them, it’s to use them sparingly, and for
resources that may not be initially discoverable; for example, a JavaScript file initially loaded in
the DOM that requests another one. Rather than preloading loads of scripts, try to whittle
down the amount of JavaScript you're shipping, as that will lead to a better user experience
rather than preloading gobs of it.

2022 Web Almanac by HTTP Archive 83

https://almanac.httparchive.org/static/images/2022/javascript/modulepreload.png
https://almanac.httparchive.org/static/images/2022/javascript/modulepreload.png

Part | Chapter 2: JavaScript

JavaScriptin the <head>

An old and often-touted best practice for performance has been to load your JavaScript in the
footer of the document to avoid render blocking of scripts and to ensure the DOM is
constructed before your scripts have a chance to run. In recent times, however, it has been
more commonplace in certain architectures to place <script> elements in the document
<head>.

This can be a good way to prioritize the loading of JavaScript in web applications, but async
and defer attributes should be used where possible to avoid render blocking of the DOM.
Render blocking is when the browser must halt all rendering of the page in order to process a
resource that the page depends on. This is done to avoid unpleasant effects such as the flash of
unstyled content”, or JavaScript runtime errors that can occur when the DOM isn’t ready for a
script that depends on DOM readiness.

77%

Figure 2.13. The percentage of mobile pages that have render-blocking scripts in the document
<head>.

We found that 77% of mobile pages have at least one render-blocking script in the document
<head> , whereas 79% of desktop pages do this. This is a concerning trend, because when

scripts block rendering, page content is not painted as quickly as it could be.

30. https://en.wikipedia.org/wiki/Flash_of unstyled_content

84 2022 Web AlImanac by HTTP Archive

https://en.wikipedia.org/wiki/Flash_of_unstyled_content
https://en.wikipedia.org/wiki/Flash_of_unstyled_content

Part | Chapter 2 : JavaScript

Pages with render-blocking JavaScript
Web Almanac 2022: JavaScript
desktop [l mobile

1,000
10,000
= 100,000
©
14
1,000,000 73%
al 77%
0% 20% 40% 60% 80%

Percentage of pages

Figure 2.14. Pages by rank that have render-blocking scripts in the document <head> .

When looking at the problem by ranked pages, we see a similarly troubling pattern. In
particular, 63% of the top 1,000 websites accessed on mobile devices ship at least one render
blocking script in the <head> , and the proportion of pages increases as we proceed through
the ranks.

There are solutions to this: using defer is arelatively safe bet that will unblock the DOM from
rendering. Using async (when possible) is a good option, and will allow scripts to run
immediately, but those scripts must not have any dependencies on other <script> elements,
otherwise errors could occur.

Where possible, render-critical JavaScript can be placed in the footer and preloaded so the
browser can get a head start on requesting those resources. Either way, the state of render-
blocking JavaScript in tandem with how much JavaScript we ship is not good, and web
developers should make more of an effort to curb these issues.

Injected scripts

Script injection is a pattern where an HTMLScriptElement iscreated in JavaScript using
document.createElement and injected into the DOM with a DOM insertion method.
Alternatively, <script> element markup in a string can be injected into the DOM via the

innerHTML method.

Script injection is a fairly common practice used in a number of scenarios, but the problem with

2022 Web Almanac by HTTP Archive 85

https://almanac.httparchive.org/static/images/2022/javascript/render-blocking-scripts-rank.png
https://almanac.httparchive.org/static/images/2022/javascript/render-blocking-scripts-rank.png
https://developer.mozilla.org/docs/Web/API/HTMLScriptElement
https://developer.mozilla.org/docs/Web/API/HTMLScriptElement
https://developer.mozilla.org/docs/Web/API/Document/createElement
https://developer.mozilla.org/docs/Web/API/Document/createElement
https://developer.mozilla.org/docs/Web/API/Element/innerHTML
https://developer.mozilla.org/docs/Web/API/Element/innerHTML

Part | Chapter 2: JavaScript

it is that it defeats the browser’s preload scanner™ by making the script undiscoverable as the
initial HTML payload is parsed. This can affect metrics such as Largest Contentful Paint (LCP)* if
the injected script resource is ultimately responsible for rendering markup, which itself can kick
off long tasks to parse large chunks of markup on the fly.

Distribution of percentage of injected scripts
Web Almanac 2022: JavaScript
desktop [l mobile

80% 70%
2
g 60% 50%
8
°
(0]
< 40%
5 25%
(]
g 0,
g 20% 8%
& 0% -

0%

10 25 50 75 90
Percentile

Figure 2.15. Distribution of percentage of injected scripts across various percentiles.

At the median, we see that 25% of a page’s scripts are injected, as opposed to leaving them
discoverable in the initial HTML response. More concerning is that the 75th and 90th
percentiles of pages inject 50% and 70% of scripts respectively.

Script injection has the potential to harm performance” when used to render page content the
user consumes, and should be avoided in these cases whenever necessary. That script injection
is so prevalent in today’s web is a concerning trend. Modern frameworks and tooling may rely
on this pattern, which means that some out-of-the-box experiences may rely on this potential
anti-pattern to provide functionality for websites.

First-party versus third-party JavaScript
There are two categories of JavaScript that websites often ship:

e First-party scripts that power the essential functions of your website and provide

31. ps:) .dev/preload- injected-async-scripts
32. https://web.dev/articles/Icp
33. https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/

86 2022 Web Almanac by HTTP Archive

https://web.dev/preload-scanner/#injected-async-scripts
https://web.dev/articles/lcp
https://almanac.httparchive.org/static/images/2022/javascript/injected-scripts.png
https://almanac.httparchive.org/static/images/2022/javascript/injected-scripts.png
https://www.igvita.com/2014/05/20/script-injected-async-scripts-considered-harmful/

Part | Chapter 2 : JavaScript

interactivity.

e Third-party scripts provided by external vendors that satisfy a variety of
requirements, such as UX research, analytics, providing advertising revenue, and
embeds for things such as videos and social media functions.

While first-party JavaScript may be easier to optimize, third-party JavaScript can itself be a
significant source of performance problems, as third-party vendors may not prioritize the
optimization of their JavaScript resources over adding new features to serve additional
business functions for their clients. Additionally, UX researchers, marketers, and other non-
technical personnel may be hesitant to give up functionality or sources of revenue that these
scripts provide.

In this section, we'll analyze the breakdown of first-party and third-party code, and comment on
the current state of how websites today are divvying up how they load JavaScript—and where

from.
Requests
Distribution of JavaScript requests by host
Web Almanac 2022: JavaScript (mobile)
First-party [l Third-party
40 34
30
S
3 20
S 20
8 10
g 10
4
. - il
10 25 50 75 90
Percentile

Figure 2.16. Distribution of first- versus third-party JavaScript requests by host.

Here, we see a sobering picture. Regardless of the percentile, it seems that all observed hosts
are serving an equivalent amount of first and third-party scripts. The median host serves 10 of
each type, the 75th percentile serves 20 of each type, and the 90th percentile host serves 34
third-party scripts!

2022 Web Almanac by HTTP Archive 87

https://almanac.httparchive.org/static/images/2022/javascript/requests-party.png
https://almanac.httparchive.org/static/images/2022/javascript/requests-party.png

Part | Chapter 2: JavaScript

This is a problematic and worrying trend. Third-party scripts are responsible for all sorts of
damage when it comes to performance. Third-party scripts may do a number of things, such as
running expensive timers that orchestrate multitudes of tasks, attach their own event listeners
that add extra work which can delay interactivity, and some video and social media third-

parties ship exorbitant amounts of scripts to power the services they provide.

Steps for mitigating third-party scripts is often more of a cultural affair than an engineering
one. If you're shipping excessive third-party scripts, conduct an audit of each script, what they
do, and profile their activity to find out what performance problems they're incurring.

If you're doing considerable UX research, consider collecting your own field data (if the origin
sends a proper Timing-Allow-0rigin header) to make informed decisions to avoid the
performance problems that some third-party scripts can cause. For every third-party script you
add, you're not just incurring loading costs, but also costs during runtime where responsiveness
to user input is crucial.

Bytes

So we know that hosts are shipping a lot of third-party scripts, but what’s the byte cost of first-
versus third-party scripts?

Distribution of JavaScript bytes by host
Web Almanac 2022: JavaScript (mobile)
First-party [l Third-party

1,250
1,003

1,000
S
§ 750 595
2
3
z 292
S
< 250 109

34
0 J— [|
10 25 50 75 90

Percentile

Figure 2.17. Distribution of first- versus third-party JavaScript bytes by host.

At nearly every percentile, the amount of bytes third-party scripts ship exceeds that of first-
party scripts. At the 75th percentile, it appears that third-party script payloads are twice that of

88 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Timing-Allow-Origin
https://developer.mozilla.org/docs/Web/HTTP/Headers/Timing-Allow-Origin
https://almanac.httparchive.org/static/images/2022/javascript/bytes-party.png
https://almanac.httparchive.org/static/images/2022/javascript/bytes-party.png

Part | Chapter 2 : JavaScript

first-party scripts. At the 90th percentile, it appears that the amount of third-party scripts sent
over the wire is nearly one megabyte.

If you find your website’s first versus third-party script payloads is similar to the graph above, it
is key that you should work with your engineering organization to try and get this number
down. It can only help your users if you do.

Dynamic import()

Dynamic import() isavariant of the static import syntaxthat can be run anywhereina
script, whereas static import expressions must be run at the top of a JavaScript file and
nowhere else.

Dynamic import () allows developers to effectively “split” off chunks of JavaScript code from
their main bundles to be loaded on-demand, which can improve startup performance by loading

0.34%

Figure 2.18. The percentage of mobile pages using dynamic import() .

less JavaScript upfront.

A staggeringly low 0.34% of all observed mobile pages currently use dynamic import() ,while
0.41% of desktop pages use it. That said, it's common for some bundlers to transform the
dynamic import() syntaxintoan ES5-compatible alternative. It's very likely that the feature

isin wider use, just less so in production JavaScript files.

It’s tricky, but a balance can be struck, and it involves gauging the user’s intent. One way of
deferring loading of JavaScript without delaying interactions is to preload™ that JavaScript
when the user signals intent to make an interaction. One example of this could be to defer
loading JavaScript for the validation of a form, and preload that JavaScript once the user has
focused a field in that form. That way, when the JavaScript is requested, it will already be in the
browser cache.

Another way could be to use a service worker to precache JavaScript necessary for interactions
when the service worker is installed. Installation should occur at a point in which the page has
fully loaded in the page’s load event. That way, when the necessary functionality is requested,
it can be retrieved from the service worker cache without startup costs.

34. https://developer.mozilla.org/docs/Web/HTML/Link_types/preload

2022 Web Almanac by HTTP Archive 89

https://v8.dev/features/dynamic-import
https://v8.dev/features/dynamic-import
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/docs/Web/HTML/Link_types/preload
https://developer.mozilla.org/docs/Web/API/Window/load_event
https://developer.mozilla.org/docs/Web/API/Window/load_event

Part | Chapter 2: JavaScript

Dynamic import () istricky to use, but more widespread adoption of it can help shift the
performance cost of loading JavaScript from startup to a later point in the page lifecycle,
presumably when there will be less network contention for resources. We hope to see
increased adoption of dynamic import () ,asthe amount of JavaScript we see loaded during

startup is only increasing.

Web workers
Web workers” are a web platform feature that reduces main thread work by spinning up a

specialized JavaScript file without direct access to the DOM on its own thread. This technology

can be used to offload tasks that could otherwise overwhelm the main thread by doing that

12%

Figure 2.19. The number of mobile pages using web workers.

work on a separate thread altogether.

It's heartening to see that 12% of mobile and desktop pages currently use one or more web
workers to relieve the main thread of work that could potentially make the user experience

worse—but there’s a lot of room for improvement.

If you have significant work that can be done without direct access to the DOM, using a web
worker is a good idea. While you have to use a specialized communication pipeline® to transfer
data to and from a web worker, it's entirely possible to make your web pages much more
responsive to user input by using the technology.

However, that communication pipeline can be tricky to set up and use, though there are open
source solutions that can simplify this process. comlink” is one such library that helps with this,
and can make the developer experience around web workers much more enjoyable.

Whether you manage web workers on your own or with a library, the point is this: if you have
expensive work to do, gauge whether or not it needs to happen on the main thread, and if not,
strongly consider using web workers to make the user experience of your websites as good as it

possibly can be.

35. https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
36. https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers#transferring_data_to_and_from_workers_further_details
37. https://www.npmjs.com/package/comlink

90 2022 Web AlImanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/docs/Web/API/Web_Workers_API/Using_web_workers#transferring_data_to_and_from_workers_further_details
https://www.npmjs.com/package/comlink

Part | Chapter 2 : JavaScript

Worklets

Worklets are a specialized type of worker that allows lower-level access to rendering pipelines
for tasks such as painting and audio processing. While there are four types of worklets, only
two—paint worklets™ and audio worklets”—are currently implemented in available browsers.
One distinct performance advantage of worklets is that they run on their own threads, freeing
up the main thread from expensive drawing and audio processing work.

0.0013%

Figure 2.20. The percentage of mobile pages that register at least one paint worklet.
With worklets being such niche technologies, it’s not surprising that they’re not widely used.
Paint worklets are an excellent way of offloading expensive processing for generative artwork

onto another thread—not to mention a great technique for adding a bit of flair to the user
experience. For every 1 million websites, only 13 of them use a paint worklet.

0.0004%

Figure 2.21. The percentage of mobile pages that register at least one audio worklet.
Adoption of audio worklets is even lower: only four in a million websites use it. It will be

interesting to see how adoption of these technologies trends over time.

How is JavaScript delivered?

An equally important aspect of JavaScript performance is how we deliver scripts to the
browser, which includes a few common—yet sometimes missed—opportunities for
optimization, starting with how we compress JavaScript.

Compression

Compression is an often-used technique that applies largely to text-based assets, such as
HTML, CSS, SVG images, and yes, JavaScript. There are a variety of compression techniques

38. https://caniuse.com/mdn-api_css_paintworklet
39. https://caniuse.com/mdn-api_audioworklet

2022 Web Almanac by HTTP Archive 91

https://caniuse.com/mdn-api_css_paintworklet
https://caniuse.com/mdn-api_audioworklet

Part | Chapter 2: JavaScript

that are widely used on the web that can speed up the delivery of scripts to the browser,
effectively shortening the resource load phase.

Compression methods of script resources
Web Almanac 2022: Javascript
desktop [l mobile

oz _ 52%

o
2
° br
£ 34%
c
o
2 (not set)
g 13%
£
[s}
o

deflate 0%

0% 20% 40% 60%

Percent of requests

Figure 2.22. Compression of JavaScript by method.

There are a few compression techniques that can be used to reduce the transfer size of a script,
with the Brotli” (br) method being the most effective®. Despite Brotli’s excellent support in
modern browsers”, it’s still clear that gzip” is the most preferred method of compression. This is
likely due to the fact that many web servers use it as the default.

When something is the default, that default sometimes remains in place rather than being
tuned for better performance. Given that only 34% of pages observed are compressing scripts
with Brotli, it’s clear that there’s an opportunity on the table to improve the loading
performance of script resources, but it’s also worth noting that it is an improvement over last
year’s adoption at 30%.

40. https://github.com/google/brotli

ps:) om/2016/10/next: i rver-compressic ith-brotli
42. https://caniuse.com/brotli
43. https://www.gzip.org/

92 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/compression-methods.png
https://almanac.httparchive.org/static/images/2022/javascript/compression-methods.png
https://github.com/google/brotli
https://www.smashingmagazine.com/2016/10/next-generation-server-compression-with-brotli/
https://caniuse.com/brotli
https://caniuse.com/brotli
https://www.gzip.org/

Part | Chapter 2 : JavaScript

Compression methods of script resources by host
Web Almanac 2022: Javascript (mobile)
First-party [l Third-party

ozip 60%

br

(not set)

Compression method

deflate

0% 20% 40% 60%

Percent of requests

Figure 2.23. Compression methods of script resources by host.

The problem is made worse by third-party script providers, which still deploy gzip compression
more widely than Brotli at 60% versus 29%, respectively. Given that third-party JavaScript is a
serious performance issue on the web today, the resource load time of these resources could be
reduced by deploying third-party resources using Brotli instead.

Uncompressed resources by host
Web Almanac 2022: Javascript (mobile)

First-party [l Third-party

100%
@
g 75%
o
o
B
5 50%
(7]
(L]
>
©
k]
S 25%
=
@
o
5]
o 0% e 0. | o
PO LR P PR PP RS EOR S L P P

Uncompressed resource size (KB)

Figure 2.24. Uncompressed resources by size.

2022 Web Almanac by HTTP Archive 93

https://almanac.httparchive.org/static/images/2022/javascript/compression-by-host.png
https://almanac.httparchive.org/static/images/2022/javascript/compression-by-host.png
https://almanac.httparchive.org/static/images/2022/javascript/uncompressed.png
https://almanac.httparchive.org/static/images/2022/javascript/uncompressed.png

Part | Chapter 2: JavaScript

Thankfully, we're seeing that it’s only mostly the smallest resources, specifically those third-
party scripts that have payloads smaller than 5 KB, that are being delivered without
compression. This is because compression yields diminishing returns when applied to small
resources, and in fact, the added overhead of dynamic compression may cause delayed
resource delivery. There are, unfortunately, some opportunities across the spectrum to
compress larger resources, such as some first-party scripts with payloads over 100 KB.

Always check your compression settings to ensure you're delivering the smallest possible script
payloads over the network, and remember: compression speeds up resource delivery. Those
scripts, once delivered to the browser, will be decompressed and their processing time will not
change due to compression. Compression is not a good excuse to deliver huge script payloads
that can make interactivity worse during startup.

Minification

Minification of text assets is a time-tested practice for reducing file size. The practice involves
removing all of the unnecessary spaces and comments from source code in order to reduce
their transfer size. A further step known as uglification is applied to JavaScript, which reduces
all of the variables, class names, and function names in a script to shorter, unreadable symbols.
Lighthouse’s Minify JavaScript” audit checks for unminified JavaScript.

Distribution of unminified JavaScript audit scores
Web Almanac 2022: JavaScript
desktop [l mobile

80% 68%
60%
8
g
S 40%
[=}
z
8
& 20% 1% o
7% 2% 8% 4%

0%

0.00-0.10 0.10-0.25 0.25-050 0.50-0.75 0.75-0.90 0.90-1.00

Range of Lighthouse "unminified JavaScript" audit scores

Figure 2.25. Distribution of unminified JavaScript audit scores.

44, https://web.dev/unminified-javascript/

94 2022 Web AlImanac by HTTP Archive

https://web.dev/unminified-javascript/
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified.png
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified.png

Part | Chapter 2 : JavaScript

Here, 0.00 represents the worst score whereas 1.00 represents the best score. 68% of mobile
pages are scoring between 0.9 and 1.0 on Lighthouse’s minified JavaScript audit, whereas the
figure for desktop pages is 79%. This means that on mobile, 32% of pages have opportunities t
ship minified JavaScript, whereas that figure for desktop pages is 21%.

Size of unminified JavaScript
Web Almanac 2022: Third Parties (mobile)
Third-partes [l] Total

76

80
W
8
% 60
°
S
=
8 40 34
£
>
(0]
i
2 20 12
@
£ 3 5
: [

0 — [|

10 25 50 75 90

Percentile

Figure 2.26. Distribution of the potential savings by minifying JavaScript.

At the median, we see that pages are shipping around 12 KB of JavaScript that can be minified
By the time we get to the 75th and 90th percentiles, however, that number jumps quite a bit,
from 34 KB to about 76 KB. Third-parties are pretty good throughout, up until we get to the
90th percentile, however, where they’re shipping around 19 KB of unminified JavaScript.

(o]

2022 Web Almanac by HTTP Archive

95

https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-bytes.png
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-bytes.png

Part | Chapter 2: JavaScript

Average wasted bytes of unminified JavaScript
Web Almanac 2022: JavaScript (mobile)

Third-party

First-party

Figure 2.27. Average wasted bytes of unminified JavaScript.

Given the data we just presented, wasted bytes of unminified JavaScript isn’t too surprising
when you look at the average. First parties are overwhelmingly the biggest culprits in shipping
unminified JavaScript at just over 80%. The remainder are just under 20% that could be doing a
bit more to ship less bytes over the wire.

Minification addresses one of the first principles of web performance: ship less bytes. If you're
failing the Lighthouse audit for unminified JavaScript, check your bundler’s configuration to
ensure your first party code is as streamlined for production as it can be. If you notice a third-
party script that’s unminified, it might be time to have a chat with that vendor to see what they
can do to fix it. Refer to the Third Parties chapter for an even deeper look into the state of third
parties on the web.

Source maps

Source maps” are a tool that web developers use to map minified and uglified production code
to their original sources. Source maps are used in production JavaScript files, and are a useful
debugging tool. Source maps can be specified in a comment pointing to a source map file at the
end of aresource, or asthe SourceMap HTTP response header.

45. https:/firef e-docs.mozilla. ow._to/use_a_source_map/index.html

96 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-avg.png
https://almanac.httparchive.org/static/images/2022/javascript/lighthouse-unminified-avg.png
https://firefox-source-docs.mozilla.org/devtools-user/debugger/how_to/use_a_source_map/index.html
https://developer.mozilla.org/docs/Web/HTTP/Headers/SourceMap
https://developer.mozilla.org/docs/Web/HTTP/Headers/SourceMap

Part | Chapter 2 : JavaScript

14%

Figure 2.28. The percentage of mobile pages specifying source map comments to publicly accessible
source maps.

14% of JavaScript resources accessed through mobile devices deliver a source map comment to
a source map that is publicly accessible, whereas 15% of JavaScript resources accessed through
desktop devices deliver them. However, the story is quite different for pages using a source

1ap TTP header.

Figure 2.29. The number of mobile pages specifying source map headers.

Only 0.12% of requests for JavaScript resources on mobile devices used a source map HTTP
header, whereas the number for desktop devices is 0.07%.

From a performance perspective, this doesn’t mean much. Source maps are a developer
experience enhancement. What you should avoid, however, is the use of inline source maps,
which insert a base64 representation of the original source into a production-ready JavaScript
asset. Inlining source maps means that you're not just sending your JavaScript resources to
users, but also their source maps, which can lead to oversized JavaScript assets that take longer
to download and process.

Responsiveness

JavaScript affects more than just startup performance. When we rely on JavaScript to provide
interactivity, those interactions are driven by event handlers that take time to execute.
Depending on the complexity of interactions and the amount of scripts involved to drive them,
users may experience poor input responsiveness.

Metrics

Many metrics are used to assess responsiveness in both the lab and the field, and tools such as
Lighthouse, Chrome UX Report (CrUX), and HTTP Archive track these metrics to provide a
data-driven view of the current state of responsiveness on today’s websites. Unless otherwise

2022 Web Almanac by HTTP Archive 97

Part | Chapter 2: JavaScript

noted, all of the following graphs depict the 75th percentile—the threshold for which Core Web
Vitals are determined to be passing“—of that metric at the origin level.

The first of these is First Input Delay (FID)”, which records the input delay of the very first
interaction made with a page. The input delay is the time between which the user has
interacted with the page and when the event handlers for that interaction begin to run. It’s
considered a load responsiveness metric that focuses on the first impression a user gets when

interacting with a website.

Distribution of FID by origin
Web Almanac 2022: JavaScript (Source: Chrome UX Report)

desktop [l phone 25

25

—_ 20
w
E
o

[15
wn
N~
Q

[4 10
)
£

g 5

0 0 0 0
0
10 25 50 75 90
Percentile

Figure 2.30. The distribution of websites’ 75th percentile FID values.

This chart shows the distribution of all websites’ 75th percentile FID values. The median
website has a FID value of O ms for at least 75% of both desktop and phone user experiences.
This “perfect FID” experience even extends into the 75th percentile of websites. Only when we
get to the 90th percentile do we start to see imperfect FID values, but only 25 ms.

Given that the “good” FID threshold is 100 ms*, we can say that at least 90% of websites meet
this bar. In fact, we know from the analysis done in the Performance chapter that 100% of
websites actually have “good” FID experiences on desktop devices, and 92% on mobile devices.

FID is an unusually permissive metric.

46. https://web.dev/articles/vitals#core-web-vitals
47. https://web.dev/articles/fid
48. https://web.dev/articles/fid#what-is-a-good-fid-score

98 2022 Web Almanac by HTTP Archive

https://web.dev/articles/vitals#core-web-vitals
https://web.dev/articles/vitals#core-web-vitals
https://web.dev/articles/fid
https://almanac.httparchive.org/static/images/2022/javascript/fid.png
https://almanac.httparchive.org/static/images/2022/javascript/fid.png
https://web.dev/articles/fid#what-is-a-good-fid-score

Part | Chapter 2 : JavaScript

Distribution of INP by origin
Web Almanac 2022: JavaScript (Source: Chrome UX Report)
desktop [l phone

400
n
£ 300
o
=
0
N 200
]
>
2
<
? 100
) . .
0

Percentile

Figure 2.31. The distribution of websites’ 75th percentile INP values.

In order to get a comprehensive view of page responsiveness across the entire page lifecycle,
though, we need to look at Interaction to Next Paint (INP)”, which assesses all keyboard, mouse,
and touch interactions made with a page and selects a high percentile of interaction latency
that’s intended to represent overall page responsiveness.

Consider that a “good” INP score is 200 milliseconds” or less. At the median, both mobile and
desktop score below this threshold, but the 75th percentile is another story, with both mobile
and desktop segments well within the “needs improvement” range. This data, quite unlike FID,
suggests that there are many opportunities for websites to do everything they can to run fewer
long tasks™ on pages, which are a key contributor to less-than-good INP scores.

49. https://web.dev/articles/inp
50. https://web.dev/articles/inp: 's-a-%22g00d%22-inp-val
51. https://web.dev/long-tasks-devtools/

2022 Web Almanac by HTTP Archive 99

https://almanac.httparchive.org/static/images/2022/javascript/inp.png
https://almanac.httparchive.org/static/images/2022/javascript/inp.png
https://web.dev/articles/inp
https://web.dev/articles/inp#what's-a-%22good%22-inp-value
https://web.dev/long-tasks-devtools/

Part | Chapter 2: JavaScript

Distribution of TBT
Web Almanac 2022: JavaScript
desktop [l mobile

8,000
6,385
6,000
m 3,596
£ 4,000
&
. 1,686
2,000 606
154 .
. _ m
10 25 50 75 90
Percentile

Figure 2.32. The distribution of pages’ lab-based TBT values.

Dovetailing into long tasks, there’s the Total Blocking Time (TBT)” metric, which calculates the

total blocking time of long tasks during startup.

Note that unlike the preceding stats on FID and INP, TBT and TTI (below) are not sourced from
real-user data. Instead, we're measuring synthetic performance in simulated desktop and

mobile environments with device-appropriate CPU and network throttling enabled. As a result
of this approach, we get exactly one TBT and TTI value for each page, rather than a distribution

of real-user values across the entire website.

Considering that INP correlates very well with TBT”, it's reasonable to assume that high TBT
scores may produce poorer INP scores. Using our synthetic approach, we see a wide gulf
between desktop and mobile segments, indicating that desktop devices with better processing
power and memory are outperforming less capable mobile devices by a wide margin. At the
75th percentile, a page has nearly 3.6 seconds of blocking time, which qualifies as a poor

experience.

52. https://web.dev/tbt/
53 i com/GoogleChromeLabs/cl http-archiy lysis/blob/mai books/HTTP_Archive_TBT_and_INP.ipynb

100 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/tbt.png
https://almanac.httparchive.org/static/images/2022/javascript/tbt.png
https://web.dev/tbt/
https://github.com/GoogleChromeLabs/chrome-http-archive-analysis/blob/main/notebooks/HTTP_Archive_TBT_and_INP.ipynb

Part | Chapter 2 : JavaScript

Distribution of TTI
Web Almanac 2022: JavaScript
desktop [l mobile
50

a1

40
,w\ 27
S 30
[=
Q
g 16
£ 2
F 9

) : I

. [| .
10 25 50 75 a0

Percentile

Figure 2.33. The distribution of the TTI scores by origin and percentile.

Finally, we come to Time to Interactive (TTI)*, which is considered “good” if the metric comes in
at under 5 seconds. Given that only the 10th percentile barely slips in under the 5 second mark,
most websites in our simulated environment are relying on JavaScript to such an extent that
pages are unable to become interactive within a reasonable timeframe—especially the 90th
percentile, which takes a staggering 41.2 seconds to become interactive.

Long tasks/blocking time

As you may have gleaned from the previous section, the principal cause of poor interaction
responsiveness is long tasks. To clarify, a long task is any task that runs on the main thread for
longer than 50 milliseconds. The length of the task beyond 50 milliseconds is that task’s
blocking time, which can be calculated by subtracting 50 milliseconds from the task’s total time.

Long tasks are a problem because they block the main thread from doing any other work until
that task is finished. When a page has lots of long tasks, the browser can feel like it’s sluggish to
respond to user input. In extreme cases, it can even feel like the browser isn’t responding at all.

54. https://web.dev/tti/

2022 Web Almanac by HTTP Archive 101

https://almanac.httparchive.org/static/images/2022/javascript/tti.png
https://almanac.httparchive.org/static/images/2022/javascript/tti.png
https://web.dev/tti/

Part | Chapter 2: JavaScript

Distribution of number of long tasks per page
Web Almanac 2022: JavaScript
desktop [l mobile

48

50

40
P 32
[}
8
o 0
2 19
S 20
-% 10
z 10 5

) || .

10 25 50 75 90

Percentile

Figure 2.34. The distribution of the number of long tasks per page.

The median page encounters 19 long tasks on mobile and 7 long tasks on desktop devices. This
makes sense when you consider that most desktop devices have greater processing power and
memory resources than mobile devices, and are actively cooled.

However, the picture gets much worse at higher percentiles. Long tasks at the 75th percentile
per page are 32 and 12 on mobile and desktop, respectively.

102 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/javascript/long-tasks.png
https://almanac.httparchive.org/static/images/2022/javascript/long-tasks.png

Part | Chapter 2 : JavaScript

Distribution of long tasks time per page
Web Almanac 2022: JavaScript
desktop [l mobile

12,500 10,856

g 10,000
S
% 7500 6,570
a
@
£ 5000 3,590
£
E 1,744
= 2,500 781
:]

0 [

10 25 50 75 90
Percentile

Figure 2.35. Distribution of long tasks time per page.

It's not enough to know how many long tasks there are per page—we need to understand the
total time those tasks are taking on pages. The median mobile page has 3.59 seconds of time
dedicated to long tasks, whereas desktop pages have far less at 0.74 seconds.

The 75th percentile suggests a much worse picture for those on mobile devices, coming in at
nearly 6.6 seconds of processing time per page dedicated to handling long tasks. This is a lot of
time the browser is spending on intense work that could be optimized or even possibly be
moved to web workers on a different thread. In any case, these results spell trouble for the
mobile web and responsiveness.

Scheduler API

Scheduling JavaScript tasks has historically been deferred to the browser. There are newer
methods such as requestIdleCallback and queueMicrotask, butthese APIsschedule
tasks in a coarse way, and—especially in the case of queueMicrotask —can cause
performance issues if misused.

The Scheduler API has recently been released, and gives developers finer control over
scheduling tasks based on priority—though it is currently only limited to Chromium-based
browsers”.

55, https://caniuse.com/mdn-api_scheduler_posttask

2022 Web Almanac by HTTP Archive 103

https://almanac.httparchive.org/static/images/2022/javascript/long-tasks-time.png
https://almanac.httparchive.org/static/images/2022/javascript/long-tasks-time.png
https://developer.mozilla.org/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/docs/Web/API/Window/requestIdleCallback
https://developer.mozilla.org/docs/Web/API/queueMicrotask
https://developer.mozilla.org/docs/Web/API/queueMicrotask
https://caniuse.com/mdn-api_scheduler_posttask
https://caniuse.com/mdn-api_scheduler_posttask

Part | Chapter 2: JavaScript

0.002%

Figure 2.36. The percentage of mobile pages using the Scheduler API.

Only 20 per million (0.002%) mobile pages are currently shipping JavaScript that uses the
Scheduler API, whereas 30 per million (0.003%) desktop pages do. This is not surprising,
considering the lack of documentation on this very new feature, and its limited support.
However, we expect this number to increase as documentation on the feature becomes
available, and especially if it is used in frameworks. We believe that the adoption of this
important new feature will eventually result in better user experience outcomes.

Synchronous XHR

AJAX—or usage of the XMLHttpRequest (XHR) method to asynchronously retrieve data and
update information on the page without a navigation request—was a very popular method of
creating dynamic user experiences. It has largely been replaced by the asynchronous fetch
method, but XHR is still supported in all major browsers™.

XHR has a flag that allows you to make synchronous requests. Synchronous XHR" is harmful for
performance because the event loop and main thread is blocked until the request is finished,
resulting in the page hanging until the data becomes available. fetch isamuch more effective
and efficient alternative with a simpler API, and has no support for synchronous fetching of

2.5%

Figure 2.37. The percentage of mobile pages using synchronous XHR.

While synchronous XHR is only used on 2.5% of mobile pages and 2.8% of desktop pages, its
continued use—no matter how small—is still a signal that some legacy applications may be
relying on this outdated method that harms the user experience.

Avoid using synchronous XHR, and XHR in general. fetch is a much more ergonomic
alternative that lacks synchronous functionality by design. Your pages will perform better
without synchronous XHR, and we hope someday to see this number fall to zero.

56. https://caniuse.com/mdn-api_xmlhttprequest

57. https://developer.mozilla.org/docs/Web/API/XMLF _and_Asy! _request

104 2022 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://developer.mozilla.org/docs/Web/API/Fetch_API
https://caniuse.com/mdn-api_xmlhttprequest
https://developer.mozilla.org/docs/Web/API/XMLHttpRequest/Synchronous_and_Asynchronous_Requests#synchronous_request

Part | Chapter 2 : JavaScript

document.write

Before the introduction of DOM insertion methods (appendChild and others, for example),
document.write was used toinsert content at the position the document.write was
made in the document.

document.write isvery problematic. For one, it blocks the HTML parser, and is problematic
for a number of other reasons the HTML spec itself warns against its use”. On slow
connections, blocking document parsing to append nodes in this way creates performance

problems that are entirely avoidable.

Figure 2.38. The number of mobile pages using document.write .

A staggering 18% of pages observed are still using document.write toadd contentto the
DOM in lieu of proper insertion methods, whereas 17% of desktop pages are still doing so. The
explanation for this could be legacy applications that haven’'t been rewritten to use the
preferred DOM methods to insert new nodes into the document, and even some third-party
scripts that still use it.

We hope to see a decline in this trend. All major browsers explicitly warn against using this
method. While it isn’'t deprecated just yet, its existence in browsers in the years to come isn’t
guaranteed. If document.write calls arein your website, you should prioritize removing

them as soon as possible.

Legacy JavaScript

JavaScript has evolved considerably over the last several years. The introduction of new
language features has turned JavaScript into a more capable and elegant language that helps
developers to write more concise JavaScript, resulting in less JavaScript loaded—provided
those features haven’'t been unnecessarily transformed into a legacy syntax by using a
transpiler such as Babel.

Lighthouse currently checks for Babel transforms that may be unnecessary on the modern web,
such as transforming use of async and await , JavaScript classes”, and other newer, yet

widely supported language features.

58. https://html.spec.whatw; il dy i kup-insertion.html#document.write()
59. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Classes

2022 Web Almanac by HTTP Archive 105

https://developer.mozilla.org/docs/Web/API/Node/appendChild
https://developer.mozilla.org/docs/Web/API/Node/appendChild
https://developer.mozilla.org/docs/Web/API/Document/write
https://developer.mozilla.org/docs/Web/API/Document/write
https://html.spec.whatwg.org/multipage/dynamic-markup-insertion.html#document.write()
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Classes

Part | Chapter 2: JavaScript

67%

Figure 2.39. The percentage of mobile pages that ship legacy JavaScript.

Just over two thirds of mobile pages are shipping JavaScript resources that are being
transformed, or otherwise contain unnecessary legacy JavaScript.

Transformations can add a lot of extra bytes to production JavaScript for the sake of
compatibility, but unless there is a necessity to support older browsers, many of these
transforms are unnecessary, and can harm startup performance. That so many pages on
mobile—and 68% of pages on desktop—are shipping these transforms is concerning.

Babel is doing much to solve this problem out of the box, such as through the compiler
assumptions feature”, but Babel is still driven by user-defined configurations, and can only do
so much in the presence of outdated configuration files.

As mentioned above, we strongly encourage developers to carefully review their Babel” and
Browserslist” configurations to ensure that the minimum amount of transforms are applied to
code in order for them to work in required browsers. Doing so can result in large reduction of
bytes shipped to end users. Developers have a lot of work to do in this area, and we hope to see
this figure decline over time now that the language’s evolution has relatively stabilized.

How is JavaScript used?

There’s more than one way to build a web page. While some may opt to use the web platform
directly, it's undeniable that the trend in the web developer industry is to reach for abstractions
that make our work easier to do and reason about. As is the case with previous years, we'll be
exploring the role of libraries and frameworks, as well as how frequently those libraries and
frameworks present security vulnerabilities that can make the web a riskier place for users.

Libraries and frameworks

Libraries and frameworks are a huge part of the developer experience—one that has the
potential to harm performance through framework overhead. Though developers have largely
accepted this trade-off, understanding what libraries and frameworks are commonly used on
the web is extremely important, as it informs our understanding of how the web is built. In this

60. https://babeljs.io/docs/en/assumptions
61. https://babeljs.io/docs/en/configuration
62. ht i i list

106 2022 Web AlImanac by HTTP Archive

https://babeljs.io/docs/en/assumptions
https://babeljs.io/docs/en/assumptions
https://babeljs.io/docs/en/configuration
https://github.com/browserslist/browserslist

Part | Chapter 2 : JavaScript

section, we'll be taking a look at the state of libraries and frameworks across the web in 2022.
Library usage

To understand the usage of libraries and frameworks, HTTP Archive uses Wappalyzer to detect

the technologies used on a page.

Adoption of top libraries and frameworks
Web Almanac 2022: JavaScript

desktop [l mobile

jQuery 81%
core-js 1%
jQuery Migrate 34%

jQuery Ul e 23%,
Modernizr | — 13%
Lodash |
LazySizes s
OWL Carouse! |mmmmmm
React |mmmms 8%
FancyBoxX |mmmmms
Slick
GSAP
Isotope P 7%
Underscore.js ’_ 6%
Lightbox P 6%
0% 25% 50% 75% 100%
Percent of pages

JavaScript libraries and frameworks

Figure 2.40. Adoption of top libraries and frameworks.

It’s still no surprise that jQuery is by far the most used library on the web today. Part of that is
because WordPress is used on 35% of sites, but even so, the majority of jQuery usage occurs

outside of the WordPress platform.

While jQuery is relatively small and reasonably quick at what it does, it still represents a certain
amount of overhead in applications. Most of what jQuery offers is now doable with native DOM
APIs”, and may be unnecessary in today’s web applications.

The usage of core-js is also not surprising, as many web applications transform their code with

63. https://youmightnotneedjquery.com/

2022 Web Almanac by HTTP Archive 107

https://almanac.httparchive.org/static/images/2022/javascript/frameworks-libraries.png
https://almanac.httparchive.org/static/images/2022/javascript/frameworks-libraries.png
https://youmightnotneedjquery.com/
https://youmightnotneedjquery.com/

Part | Chapter 2: JavaScript

Babel, which often uses core-js to fill in missing gaps in APls across browsers. As browsers
mature, this figure should drop—and that would be a good thing indeed, as modern browsers
are more capable than ever, and shipping core-js code could end up being wasted bytes.

React usage notably remained the same from last year at 8%, which may be a signal that
adoption of the library has plateaued due to an increasing amount of choices in the JavaScript
ecosystem.

Libraries used together

It’s not an uncommon scenario to see multiple frameworks and libraries used on the same page.
As with last year, we'll examine this phenomenon to gain insight into how many libraries and
frameworks have been used together in 2022.

Libraries Desktop Mobile
jQuery 10.19% 10.33%
jQuery, jQuery Migrate 4.30% 4.94%
core-js, jQuery, jQuery Migrate 2.48% 2.80%
core-js, jQuery 2.78% 2.74%
jQuery, jQuery Ul 2.40% 2.07%
core-js, jQuery, jQuery Migrate, jQuery Ul 1.18% 1.36%
jQuery, jQuery Migrate, jQuery Ul 0.88% 0.99%
GSAP, Lodash, Polyfill, React 0.48% 0.93%
Modernizr, jQuery 0.87% 0.86%
core-js 0.92% 0.85%

Figure 2.41. Analysis of libraries and frameworks used together on observed pages.

It’s clear though that jQuery has some serious staying power, with some combination of it, its Ul
framework, and its migration plugin occurring in the top seven spots, with core-js having a
prominent role in library usage as well.

Security vulnerabilities

Given the wide proliferation of JavaScript on today’s web, and with the advent of installable

108 2022 Web AlImanac by HTTP Archive

Part | Chapter 2 : JavaScript

JavaScript packages, it’s no surprise that security vulnerabilities exist in the JavaScript

57%

Figure 2.42. The percentage of mobile pages that download a vulnerable JavaScript library or
framework.

ecosystem.

While 57% of mobile pages serving up a vulnerable JavaScript library or framework is
significant, this figure is down from last year’s figure of 64%. This is encouraging, but there’s
quite a bit of work to be done to lower this figure. We hope that as more security vulnerabilities
are patched, developers will be incentivized to update their dependencies to avoid exposing
their users to harm.

Library or framework Desktop Mobile

jQuery 49.12% 48.80%
jQuery Ul 16.01% 14.88%
Bootstrap 11.53% 11.19%
Moment.js 4.54% 3.91%
Underscore 3.41% 3.11%
Lo-Dash 2.52% 2.44%
GreenSock JS 1.65% 1.62%
Handlebars 1.27% 1.12%
AngularJS* 0.99% 0.79%
Mustache 0.44% 0.57%

Figure 2.43. The percentage of pages having known JavaScript vulnerabilities among the top ten
most commonly used libraries and frameworks.

With jQuery being the most popular library in use on the web today, it’s no surprise that it and
its associated Ul framework represents a fair amount of the security vulnerabilities that users
are exposed to on the web today. This could likely be that some developers are still using older

64. https://angularjs.org

2022 Web Almanac by HTTP Archive 109

https://angularjs.org/

Part | Chapter 2: JavaScript

versions of these scripts which don’t take advantage of fixes to known vulnerabilities.

A notable entry is Bootstrap, which is a Ul framework that helps developers to quickly
prototype or build new layouts without using CSS directly. Given the release of newer CSS
layout modes such as Grid or Flexbox, we may see usage of Bootstrap decrease over time, or in
lieu of that, see developers update their Bootstrap dependencies to ship more safe and secure
websites.

Regardless of what libraries and frameworks you use, be sure to regularly update your
dependencies wherever possible to avoid exposing your users to harm. While package updates
do result in some amount of refactoring or code fixes from time to time, the effort is worth the
reduction in liability and increase in user safety.

Web components and shadow DOM

For some time, web development has been driven by a componentization model employed by
numerous frameworks. The web platform has similarly evolved to provide encapsulation of
logic and styling through web components and the shadow DOM. To kick off this year’s analysis,
we'll begin with custom elements®.

2.0%

Figure 2.44. The percentage of desktop pages that used custom elements.

This figure is down a bit from last year’s analysis of custom element usage on desktop pages,
which was 3%. With the advantages that custom elements provide and their reasonably broad
support in modern browsers, we're hoping that the web component model will compel
developers to leverage web platform built-ins to create faster user experiences.

0.39%

Figure 2.45. The percentage of mobile pages that used shadow DOM.

Shadow DOM* allows you to create dedicated nodes in a document that contain their own
scope for sub-elements and styling, isolating a component from the main DOM tree. Compared
to last year’s figure of 0.37% of all pages using shadow DOM, adoption of the feature has

65. .google.c

66. google. b/fund

110 2022 Web Almanac by HTTP Archive

https://developers.google.com/web/fundamentals/web-components/customelements
https://developers.google.com/web/fundamentals/web-components/shadowdom

Part | Chapter 2 : JavaScript

remained much the same, with 0.39% of mobile pages and 0.47% of desktop pages using it.

0.05%

Figure 2.46. The percentage of mobile pages that use templates.

The template element helps developers reuse markup patterns. Their contents render only
when referenced by JavaScript. Templates work well with web components, as the content that
is not yet referenced by JavaScript is then appended to a shadow root using the shadow DOM.

Roughly 0.05% of web pages on both desktop and mobile are currently using the template

element. Though templates are well supported in browsers, their adoption is currently scant.

0.08%

Figure 2.47. The percentage of mobile pages that used the is attribute.

The HTML 1is attribute is an alternate way of inserting custom elements into the page. Rather
than using the custom element’s name as the HTML tag, the name is passed to any standard
HTML element, which implements the web component logic. The is attribute is a way to use
web components that can still fall back to standard HTML element behavior if web components
fail to be registered on the page.

This is the first year we are tracking usage of this attribute, and unsurprisingly, its adoption is
lower than custom elements themselves. Due to the lack of support in Safari, this means that
browsers on iOS and Safari on macOS can’'t make use of the attribute, possibly contributing to
the attribute’s limited usage.

Conclusion

The state of JavaScript is largely continuing the way trends would have suggested last year.
We're shipping more of it, for sure, but we're also trying to mitigate the ill effects of excessive
JavaScript through increased usage of techniques such as minification, resource hints,
compression, and even down to the libraries we use.

The state of JavaScript is a constantly evolving phenomenon. It’s clear that we have an
increased reliance on it more than ever, but that spells trouble for the collective user

2022 Web Almanac by HTTP Archive m

https://developer.mozilla.org/docs/Web/HTML/Global_attributes/is
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/is

Part | Chapter 2: JavaScript

experience of the web. We need to do all we can—and more—to stem the tide of how much
JavaScript we ship on production websites.

As the web platform matures, we're hoping that we see increased direct adoption of its various
APIs and features where it makes sense to do so. For those experiences that require
frameworks for a better developer experience, we're hoping to see additional optimizations and
opportunities for framework authors to adopt new APlIs to help them deliver on both a better

developer experience and better experiences for users.

Let’s hope that next year signals a shift in the trend. In the meantime, let’s continue to do all we
can” to make the web as fast as we possibly can, while keeping an eye on both lab* and field”

data along the way.

Author

Jeremy Wagner

X @malchata) malchata @ https://jlwagner.net/

Jeremy Wagner is a technical writer for Google on performance and Core Web
Vitals. He has also written for A List Apart, CSS-Tricks, and Smashing Magazine.
Jeremy will someday relocate to the remote wilderness where sand has not yet
been taught to think. Until then, he continues to reside in Minnesota’s Twin Cities

with his wife and stepdaughters, bemoaning the existence of strip malls.

67. https://web.dev/fast/
68. https://web.dev/lab-and-field-data-differences/#lab-data
69. https://web.dev/lab-and-field-data-diff field-datc

12 2022 Web AlImanac by HTTP Archive

https://web.dev/fast/
https://web.dev/fast/
https://web.dev/lab-and-field-data-differences/#lab-data
https://web.dev/lab-and-field-data-differences/#field-data
https://x.com/malchata
https://github.com/malchata
https://jlwagner.net/

Part | Chapter 3 : Markup

Partl Chapter3

Markup

i

/>

¢ -
/ J]@@ |
Written by Jens Oliver Meiert

Reviewed by Brian Kardell and Simon Pieters
Analyzed by Rick Viscomi
Edited by Barry Pollard

Introduction

As the 2020 chapter said”, without HTML there are no web pages, no web sites, no web apps.
You can say that without HTML, there’s no Web. That makes HTML one of the most important
web standards, if not the most important web standard.

Accordingly, like every year, we used the millions of pages in our data set—7.9 million in the
mobile set, 5.4 million in the desktop set, with overlap—to also look at HTML. This chapter
doesn’t cover “everything” there is about HTML, so we explicitly encourage you to also analyze
the data we gathered™ and to share your own conclusions—and when you do, tag them:

#htmlalmanac™.

70. https://almanac.httparchive.org/en/2020/markup#introduction
71. https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQOOL 1HmGTsScHUuwA8GZuRLHU/edit
72. https://x.com/hashtag/htmlalmanac

2022 Web Almanac by HTTP Archive n3

https://almanac.httparchive.org/en/2020/markup#introduction
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit
https://docs.google.com/spreadsheets/d/1grkd2_1xSV3jvNK6ucRQ0OL1HmGTsScHuwA8GZuRLHU/edit
https://x.com/hashtag/htmlalmanac

Part | Chapter 3 : Markup

Document data

There’s much to be curious about when it comes to how we write HTML. We can ask lots of
questions, but when it comes to HTML in general, let’s have a look at how our HTML is sent to
our browsers, before we even get into the contents of the markup itself.

Doctypes

Doctype Desktop Mobile

html 88.1% 90.0%

html -//w3c//dtd xhtml 1.0 transitional//en
http://www.w3.0rg/tr/xhtml1l/dtd/ 4.7% 3.9%
xhtmll-transitional.dtd

No doctype 3.0% 2.7%

html -//w3c//dtd xhtml 1.0 strict//en

1.2% 1.1%
http://www.w3.0rg/tr/xhtml1l/dtd/xhtmll-strict.dtd
html -//w3c//dtd html 4.01 transitional//en 0.9% 0.6%
http://www.w3.org/tr/html4/loose. dtd i e
html -//w3c//dtd html 4.01 transitional//en 0.4% 0.4%

Figure 3.1. Doctype usage.

Let’s start with doctypes—which one is the most popular? But you know the answer to this one:
It's the short, simple, boring standard HTML doctype, thatis, <!DOCTYPE html>.

Figure 3.2. Mobile using the standard HTML doctype.

90% of all mobile pages use it—as the mobile data set is largest, this chapter will usually work
with that data. Next most popular is XHTML 1.0 Transitional (3.9%, down from 4.6% in 2021%).
After that it’s no doctype being set at all at 2.7%, up from 2.5% last year.

73. https://almanac.httparchive.org/en/2021/markup#doctypes

n4 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/en/2021/markup#doctypes

Part | Chapter 3 : Markup

Compression

HTML document content-encoding
Web Almanac 2022: Markup

br gzip [none

desktop
(]
.Q
3
@
o

mobile

0% 25% 50% 75% 100%

Percent of websites

Figure 3.3. HTML document content encoding.

Are HTML documents being compressed? How many? How? 86% of them are—with 58% (down
5.8% since last year) overall being gzip-compressed, and 28% (up 6.1%) being compressed using
Brotli. Overall, slightly more documents are being compressed, and compressed more
effectively.

2022 Web Almanac by HTTP Archive n5

https://almanac.httparchive.org/static/images/2022/markup/content-encoding.png
https://almanac.httparchive.org/static/images/2022/markup/content-encoding.png

Part | Chapter 3 : Markup

Languages

Most popular regional HTML lang values
Web Almanac 2022: Markup

desktop [l mobile

en 19%
(not set)
en-us

ja

es

pt-br

en-gb

Regional language code

ru

de

de-de

0% 5% 10% 15% 20% 25%

Percent of pages

Figure 3.4. Most popular regional HTML lang values.

What about languages? In our data set, 35% of pages used a lang attribute mapping to
English; 17% had no language set; and you already see the difficulties—the sample is likely
biased and also not as big as to reflect all of the world, and no lang attribute being used is not
equaling no language being set so, this isn't something our data would be useful for.

Conformance

Do documents conform with the HTML specification—i.e., are they valid? A quick way for you to
tell is by using a tool like the W3C markup validation service™.

We didn’t and we couldn’t check this yet. So why include this section?

The reason to at least mention conformance is that if you don’t check on conformance, if you

74. https://validatorw3.org/

16 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/markup/html-languages.png
https://almanac.httparchive.org/static/images/2022/markup/html-languages.png
https://validator.w3.org/

Part | Chapter 3 : Markup

don’t validate, there’s a good chance—in practice, effectively a 100% chance”—you end up
writing at least some fictitious and fantasy (and therefore wrong) HTML. But HTML isn’t fiction
or fantasy—it’s a hard technical standard with clear rules on what works and what doesn't.

For a professional, it's good to know these rules. It's good work to produce code that works and
that doesn’t contain anything superfluous, too. And both of that—learning and not shipping
anything non-working or superfluous—is why conformance matters, and why validation
matters.

We don’t have conformance data to share in the Web Almanac yet, but that doesn’t mean the
point is any less important. And if you haven't focused on conformance yet—start validating
your HTML output. Maybe one of the next editions of the Web Almanac will have some positive
news to share because of you.

Document size

HTML payload and document size are a staple in this series—we’ve looked at this information
since 2019. But the trend is clear, and while it follows a common theme that other chapters will
confirm, too, it’s not a great one:

Median transfer size of HTML document
Web Almanac 2022: Markup
desktop [l mobile

40
27 30
g 30 26 25
> R T
N T
7]
8 20
w0
=
g
o
= 10
e
T
0
2019 2020 2021 2022
Year

Figure 3.5. Median transfer size of HTML document.

After some brief relief in 2020, document size has continued growing in 2021, and again in

75. ht jert.c blog/valid-html-2022/

2022 Web Almanac by HTTP Archive n7

https://meiert.com/en/blog/valid-html-2022/
https://almanac.httparchive.org/static/images/2022/markup/html-document-transfer-size.png
https://almanac.httparchive.org/static/images/2022/markup/html-document-transfer-size.png

Part | Chapter 3 : Markup

2022, with a median transfer size of 30 kB in our mobile data set.

One way to counter this trend is to write HTML, the HTML way (and not the XHTML way)”, as
that would already result in smaller HTML transfer size. Disclosure: Your author here likes to come
up with HTML writing classifications, and enjoys promoting minimal HTML.

Elements
If you're not including the svg and math elements—because they’re specified outside of
HTML—the current HTML specification currently consists of 111 elements.

Elements, not tags, because we're not referring to mere start or end tags, like or </ins>.And

some people count HTML elements differently, but most important is to be clear about how you're
counting”.

What can we observe?

Element diversity

Distribution of distinct elements per page
Web Almanac 2022: Markup
desktop [l mobile

50 45
Q
g " 38
3 32
1]
§ 30 2
£ 22
[}
o
° 20
o
Q
s
5 10
[5]
o
e
z 0

10 25 50 75)

Percentile

Figure 3.6. Distribution of distinct elements per page.

The first thing we can note is that developers use slightly more different elements per page

76. https://css-tricks.com/write-html-the-html-way-not-the-xhtml-way.
77. D ert.c bloa/the ber-of-html-el

ng 2022 Web Almanac by HTTP Archive

https://css-tricks.com/write-html-the-html-way-not-the-xhtml-way/
https://meiert.com/en/blog/the-number-of-html-elements/
https://meiert.com/en/blog/the-number-of-html-elements/
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png

Part | Chapter 3 : Markup

now, with a median of 32 different elements per document.

The medianis up from 31 elements in 2021”, and 30 elements in 2020”. As this is a trend
throughout, it may be a tender sign that developers put HTML elements to better use, by using
more of them for what they’re there for.

Alas, there’s another trend which aligns with an increasing document size, and that’s a growing
number of elements per page in total:

Distribution of distinct elements per page
Web Almanac 2022: Markup

desktop [l mobile

50 45
S
g 38
= 40
g 32
% 30 2
5 22
[
k]
o 20
[}
(=%
b
s 10
[
e}
£
2 0

10 25 50 75 90

Percentile

Figure 3.7. Distribution of elements per page.

The median is currently at 653 elements per page, up from 616 in 2021, and 587 in 2020—all
per the respective mobile data set. Do we publish more content, requiring more elements to
hold them (something like, more paragraphs per text, more p elements)? Or is this just another
sign of an unchecked div pandemic? Our data doesn’t answer this but it is probably due to
both—and more—reasons.

Top elements

The following elements are used most frequently:

78. https://almanac.httparchive.org/en/2021/markup#element-diversity
79. ht I F hive.org/en/2020, p; diversity

2022 Web Almanac by HTTP Archive no

https://almanac.httparchive.org/en/2021/markup#element-diversity
https://almanac.httparchive.org/en/2020/markup#element-diversity
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png
https://almanac.httparchive.org/static/images/2022/markup/element-count-distribution.png

Part | Chapter 3 : Markup

2019 2020 2021 2022

div div div div
a a a a
span span span span
li li li li
img img img img

script script script script

p p p p

option link link link
1 meta 1
option 1 meta

Figure 3.8. Most used elements.

The div elementis—by far—the most popular element: We found 2,123,819,193 occurrences
in the mobile data set, and 1,522,017,185 of them in our desktop data set.

Figure 3.9. Percentage of elements which are div elements.

Divitis” is real.

If you wonder about the odd one out, the i element, it stands to reason that this is still largely
due to Font Awesome™ and its arguable misuse of this element. The element has also a bad
reputation because during XHTML times, everyone suggested to use em instead—but that

advice wasn't sound, and i elements have their use cases.

When it comes to what elements are being used on the most documents, the list looks a little
different:

80. https://en.wiktionary.org/wiki/divitis
81. https:/fontawesome.com/

120 2022 Web Almanac by HTTP Archive

https://en.wiktionary.org/wiki/divitis
https://developer.mozilla.org/docs/Web/HTML/Element/i
https://developer.mozilla.org/docs/Web/HTML/Element/i
https://fontawesome.com/
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-i-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-i-element

Part | Chapter 3 : Markup

Adoption of top HTML elements
Web Almanac 2022: Markup

desktop [l mobile

il 99.4%
head 99.4%
body 99.2%
title 99.0%
meta 98.9%
div 98.5%
. a 98.1%
£
g link 98.0%
script 97.8%
img 96.1%
span 94.7%
P 90.0%
ul 88.7%
l 88.6%
0.0% 25.0% 50.0% 75.0% 100.0%

Percent of pages

Figure 3.10. Adoption of top HTML elements.

It's not a surprise that nearly every document uses html, head ,or body tags—they are
automatically inserted in the DOM and that is what is being counted here. That the numbers
are slightly less than 100% is due to a small number of pages that break detection by overriding
the JavaScript APls we use—for example, MooTools” overriding the JSON.stringify() API.

It's a lot more surprising to miss title on 1% of all sampled documents—this element is not
optional, and not being inserted in the DOM, and its omission an indicator for lack of

conformance checking.

82. https://mootools.net/

2022 Web Almanac by HTTP Archive 121

https://almanac.httparchive.org/static/images/2022/markup/adoption-of-top-html-elements.png
https://almanac.httparchive.org/static/images/2022/markup/adoption-of-top-html-elements.png
https://mootools.net/

Part | Chapter 3 : Markup

The elements that then follow are old friends—especially a, img,and meta have been

popular elements ever since lan Hickson’s seminal HTML study back” in 2005.

What's the least used HTML element that’s part of the current standard, you ask? That’s samp ,

with a mere 2,002 findings in our mobile set.

Custom elements

Custom elements”—elements we can loosely identify by their inner-name use of a hyphen—also
made it into our samples again. This year, however, the Top 10 is entirely dominated by Slider
Revolution”:

Custom element Desktop Mobile

rs-module-wrap 2.1% 2.3%
rs-module 2.1% 2.3%
rs-slides 2.1% 2.3%
rs-slide 2.1% 2.3%
rs-sbg-wrap 2.0% 2.2%
rs-sbg-px 2.0% 2.2%
rs-shg 2.0% 2.2%
rs-progress 2.0% 2.2%
rs-layer 1.8% 2.0%
rs-mask-wrap 1.8% 2.0%

Figure 3.11. Most used custom elements.

That’s impressive—but gives us little to work with other than saying that Slider Revolution is
used on roughly 2% of all sampled pages.

What are the next popular custom elements that are not part of Slider Revolution?

83. https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
84. https:/| pec.whatwg. i Il ts.html#cust {l ts-core-concepts
85. https://www.sliderrevolution.com/

122 2022 Web AlImanac by HTTP Archive

https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-samp-element
https://html.spec.whatwg.org/multipage/text-level-semantics.html#the-samp-element
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
https://www.sliderrevolution.com/
https://www.sliderrevolution.com/

Part | Chapter 3 : Markup

Custom element Desktop Mobile

pages-css 1.1% 2.0%
wix-image 1.1% 2.0%
router-outlet 0.7% 0.5%
wix-1iframe 0.4% 0.7%
ss3-loader 0.5% 0.5%

Figure 3.12. Most used custom elements not starting with rs- .
This is more diverse: pages-css, wix-image and wix-iframe come from the Wix website

builder. router-outlet originatesin Angular. And ss3-loader seems to berelated to
Smart Slider.

Obsolete elements

Are obsolete elements still a thing? Given that not-validating is still a thing, yes.

Obsolete elements
Web Almanac 2022: Markup
desktop [l mobile

center 6.1%

font

marquee

Element

nobr

big

0.0% 2.0% 4.0% 6.0% 8.0%

Percent of pages

Figure 3.13. Obsolete elements.

2022 Web Almanac by HTTP Archive 123

https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements.png
https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements.png

Part | Chapter 3 : Markup

On 6.1% of pages, you still find center elements (hi Google home page®), and on 5.4% of
pages, you find font elements. Use of both elements went down (down 0.5% in both cases),

fortunately, while marquee, nobr,and big didn't witness significant changes.

center and font make for the lion’s share (81.2%) of all obsolete elements, per our analysis:

Obsolete elements relative use
Web Almanac 2022: Markup (mobile)

frame

big

nobr

marquee

center

font

Figure 3.14. Obsolete elements relative use.

Attributes

If elements are the bread of HTML, then attributes are the butter. What can we learn here?

Top attributes

The most popular attribute, by far, was and still is class :

86. https://www.google.com/

124 2022 Web Almanac by HTTP Archive

https://www.google.com/
https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements-relative-use.png
https://almanac.httparchive.org/static/images/2022/markup/obsolete-elements-relative-use.png

Part | Chapter 3 : Markup

Attribute usage by page
Web Almanac 2022: Markup

desktop [l mobile

href 99%,
s 99%
content 99%
name 99%
o type 98%
2
E class 98%
rel 98%
. 98%
style 96%
al 91%
0% 25% 50% 75% 100%

Percent of pages

Figure 3.15. Attribute usage.
This order isn't any different from what we've seen last year, but there are some changes:

e class (¥0.3%), href (v0.9%), style (v0.6%), id (¥0.2%), type (¥0.1%),
title (¥0.3%),and value (¥0.5%)are all used a little less than before.

e src (A0.3%)and alt (A0.1%) are used more than before—tentatively good news

for accessibility!

e rel usage hasn't changed significantly.

Are there attributes we find on (nearly) every document? Yes:

2022 Web Almanac by HTTP Archive 125

https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png
https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png

Part | Chapter 3 : Markup

Attribute usage by page
Web Almanac 2022: Markup

desktop [l mobile

href 99%
src 99%
content 99%,
name 99%
P 98%
3
S class 98%
rel 98%
id 98%
style 96%
alt 91%
0% 25% 50% 75% 100%

Percent of pages

Figure 3.16. Attribute usage by page.

href, src, content (metadata),and name (metadata, form identifiers) are present on

nearly every document in our sample.

data-* attributes
For data-* attributes—which allow authors to embed their own custom metadata—we also
pulled new information.

This changed only little compared to last year’'s data-* attributes stats. Here are some

changes to call out:

e data-id isstill the most popular data-* attribute, with a0.7% increase

compared to 2021.

126 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png
https://almanac.httparchive.org/static/images/2022/markup/attribute-usage.png
https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
https://html.spec.whatwg.org/multipage/dom.html#embedding-custom-non-visible-data-with-the-data-*-attributes
https://almanac.httparchive.org/en/2021/markup#data--attributes
https://almanac.httparchive.org/en/2021/markup#data--attributes

Part | Chapter 3 : Markup

e data-element type,though its position stayed the same, gained 0.7% as well.

e data-testid ranked #6 before, gained 0.3%, and jumped to #4.

e data-widget type ranked #8, gained 0.4% popularity, and also gained two spots,

taking #6 in 2022.

data-element type and data-widget type relate to Elementor”, while data-testid is

coming from Testing Library”.

Let’s have a look at how often we find data-* attributes on our pages:

Data attribute popularity
Web Almanac 2021: Markup

desktop [l mobile

data-toggle 22%,
data-src 20%
data-target
9 20%
data-id
2
é data-type
=
% data-href 10%
a
data-fbcssmodules 10%
data-slick-index 9%
data-google-container-id 9%
data-load-complete 9%
0% 5% 10% 15% 20% 25%
Percent of pages
Figure 3.17. Data attribute popularity.
87. https://developers.elementor.com/
88. https:/testing-library.com/
127

2022 Web Almanac by HTTP Archive

https://developers.elementor.com/
https://testing-library.com/
https://almanac.httparchive.org/static/images/2022/markup/data-attribute-popularity.png
https://almanac.httparchive.org/static/images/2022/markup/data-attribute-popularity.png

Part | Chapter 3 : Markup

Their popularity is high! Per the chart above close to every fourth document uses data-*
attributes. But the overall data show that 88% of documents use at least one data-*

attribute. That’s quite some adoption.

Social markup
Last year’s edition introduced a section on social markup®, special markup which makes it easier

for social platforms to identify and display the respective metadata. Here's the 2022 update:

Social meta nodes usage
Web Almanac 2022: Markup

desktop [l mobile

og:title 57%

og:url 54%
og:type
og:description

og:site_name

twitter:card

Meta node name

og:image

og:locale

twitter:title

twitter:description

0% 20% 40% 60%

Percent of pages

Figure 3.18. Social meta nodes usage.

Do you need all of this metadata? That depends on your requirements. But if these
requirements are about showing title, description, and image, you don’t seem to need nearly as

89. ive.org/en/2021/mar ial-markup

128 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/en/2021/markup#social-markup
https://almanac.httparchive.org/static/images/2022/markup/social-meta-nodes-usage.png
https://almanac.httparchive.org/static/images/2022/markup/social-meta-nodes-usage.png

Part | Chapter 3 : Markup

much. You may be able to do with twitter:card, og:title, og:description (hooked
up tostandard description metadata),and og:image . The author and many others have

described options for minimal social markup”.

Conclusion

This was a glance at HTML in 2022.

The conclusion is brief: Going from year to year, it’s hard to say what important trends were

started or reversed. Document size seems to keep growing—at least from 2020 to 2021 to

2022. The number of elements per page goes up every year too. There may be slightly more
alt attributes now, but that’s relative to itself and we can'’t tell whether more images now do

have an appropriate alt attribute set—nor whether its text is really meaningful”.

But with all of this, the Web Almanac will help. We're going to look at HTML again—next year,
the year after next, and the year after that. And we'll go into more detail again and we'll look

back at more years.

What perhaps we'll also be able to do is to look at conformance too. Not everyone may care
about this at this time in our field. But we're all professionals, and it seems at least relevant to
know whether overall, we produce work that corresponds to the underlying standard(s)”. After
all, this shouldn’t be a chapter about fantasy HTML—it should be one about HTML that actually
works. It’s one of the most important web standards.

Author

Jens Oliver Meiert

X @j9t @ @https:/mas.to/@j9t W @meiert.com ot M meiert @ https://meiert.com/en/

Jens Oliver Meiert is an engineering lead and author (The Web Development
Glossary”, Upgrade Your HTML”), who works as an engineering manager at
LivePerson”. He specializes in HTML and CSS minimization and optimization. Jens
regularly writes about the craft of web development on his website, meiert.com”.

90. https://meiert.com/en/blog/minimal-social-markup/

91. https://html.spec.whatw il i html#alt
92. https://html.spec.whatwg.org

93. https://leanpub.com/web-development-glossary

94. https://www.amazon.com/dp/BO94W54R2N/

95. https://www.liveperson.com/

96. https://meiert.com/en/

2022 Web Almanac by HTTP Archive 129

https://meiert.com/en/blog/minimal-social-markup/
https://html.spec.whatwg.org/multipage/images.html#alt
https://html.spec.whatwg.org/multipage/
https://x.com/j9t
https://mas.to/@j9t
https://bsky.app/profile/meiert.com
https://github.com/j9t
https://www.linkedin.com/in/meiert/
https://meiert.com/en/
https://leanpub.com/web-development-glossary
https://leanpub.com/web-development-glossary
https://www.amazon.com/dp/B094W54R2N/
https://www.liveperson.com/
https://meiert.com/en/

130 2022 Web AlImanac by HTTP Archive

Part | Chapter 4: Structured Data

Partl Chapter 4
Structured Data

Written by Andrea Volpini and Allen ONeill
Reviewed by Rob Teitelman and Jono Alderson
Analyzed by Rick Viscomi

Edited by Jasmine Drudge-Willson

Introduction

This is the second year that the Web Almanac has included a chapter on structured data. Last
year’s content gave a solid grounding” in the concept of structured data, outlining the reason it
exists, the most frequently used types, and how it benefits organizations. This year we
compared data gathered in 2022 with the previous data from last year, so were able to monitor
trends that occurred within that period.

Despite many advances in machine learning and in particular the field of “natural language
progressing”, data still needs to be presented in a machine-readable format. Structured data
assists in information discoverability in web search, data linkage and archival purposes. By
implementing structured data on websites, engineers and web content creators facilitate:

o making website data more widely available for automated discovery and linking

97. https://almanac.httparchive.org/en/2021/structured-data#key-concepts

2022 Web Almanac by HTTP Archive 131

https://almanac.httparchive.org/en/2021/structured-data#key-concepts

Part | Chapter 4 : Structured Data

o the open availability of data for public research

e ensuring the quality of the organization’s data is maintained when the data leaves
its origin

Organizations of all sizes and types want their content to be discovered on the web. Search
engines such as Google and Bing emphasize data discoverability by promoting the use of
structured data. From an SEO point of view, it is advantageous to present data in an easy to find
and parse manner. Some of these advantages will be discussed in the use cases and key
concepts sections within this chapter.

Last year’s introduction” pointed out that “when machines can reliably extract structured data,
at scale, we enable new and smarter types of software, systems, services and businesses”. This
year’s chapter includes sections that explore recently published research on structured data,
open source frameworks and tools that assist the generation of high-quality structured data.

This year we provide the first year over year comparison of metrics such as the presence of
different structured data types as well as the growth of those structured data types, and
examines the evolving benefits of using structured data. Having a baseline of data from 2021
allows us to gain insights into how the use of structured data has changed over the intervening
period and observe interesting trends, for example the growth of TikTok in the period.

Data caveats

Structured data can appear in many forms, and may be more visible in certain domains, and
their corresponding websites, over others. For example, compare a news website with an
ecommerce website. In general, a news site shows the most important breaking news on its
home page, therefore the structured data relating to the news articles may be present on the
main website landing page attached as data-snippets to the individual article headlines. In
comparison, structured data in ecommerce pertains to individual products and, as such, is
mostly present within a website’s product catalog itself, and in many ways, “hidden” from a high
level search of the main navigation and promotional parts of the website. This is the key caveat
that we need to be aware of in relation to the structured data chapter and report.

Due to the fact that the technology used to harvest data from websites only scratches the
surface of sites (ie: the home pages), and does not go into depth on a full crawl of the site, we
are unable to get a full picture of the extent of structured data usage in sites where such data is
by necessity, contained deep within the site. In future years we hope to take a sample of sites
across different domains and go deep to rectify this issue and give additional insight into

98. https://almanac.httparchive.org/en/2021/structured-data#introduction

132 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/en/2021/structured-data#introduction

Part | Chapter 4: Structured Data

domain-specific use of structured data.

The high level caveats from last year’s chapter still remain, namely:

e Auto-generated structured data: This is where technologies such as content
creation systems auto-generate structured data snippets based on templates. In
this case any template-based error will inevitably populate across all data

presented.

o Dataformat overlaps: Structured data can be presented in a number of different
ways, including JSON-LD, RDF etc. This means that we may see overlap, for
example, between a Facebook meta tag and the same tag presented in a different
manner in the RDFa section. As analysis is tightly based on queries created for the
baseline in 2021, we expect the impact of cleaning/normalization and data
flattening should carry through for like analysis.

Key concepts

As structured data is arich and complex area, it is important to explore and explain some key
concepts of the topic before diving head-first into further analysis.

Linked data

By adding structured data to web pages, and providing URI links to the entities the pages
contain/reference, we create linked data. This structured data is then interlinked, making it
more useful through semantic queries.

Adding linked data to describe web page content enables machines to treat web pages as
databases. At a large scale, this contributes to the semantic web”. The semantic web links data
together through The Resource Description Framework (RDF). This is a framework for
representing information on the web using URIs to define entities and the relationships
between them.

A relationship between entities in the RDF data model is known as a semantic triple. With a

100

semantic triple™ (or just triple), we can codify a statement about data. These expressions follow

99. https://wikipedia.org/wiki/Semantic_Web
100. https://wikipedia.org/wiki/Semantic_triple

2022 Web Almanac by HTTP Archive 133

https://wikipedia.org/wiki/Linked_data
https://wikipedia.org/wiki/Semantic_Web
https://wikipedia.org/wiki/Semantic_triple

Part | Chapter 4 : Structured Data

the form of subject-predicate-object (e.g., “Allen knows John”).

To be able to retrieve and manipulate RDF data, we can use an RDF Query Language such as
SPARQL", the standard RDF query language.

As will be discussed later, this semantic web creates many opportunities for business and

technology.

Open data

Linked data may also be open data, described as Linked Open Data. Open data, as the name
implies, is data that is openly accessible to anyone for any purpose. This data is licensed under

an open license.

102

Open data is the first of the 5 stars of open data™, a deployment scheme suggested by Tim
Berners-Lee. According to the open data handbook™, to score the maximum five stars, data
must (1) Be available on the Web under an open license, (2) Be in the form of structured data,
(3) Be in a non-proprietary file format, (4) Use URIs as its identifiers, (5) Include links to other

data sources (see data linking).

While structured data is the second star in the 5 star open data plan, linked data should fulfill
requirements for all 5 stars of open data.

Semantic search engines, rich results and beyond

A semantic search engine is one which performs semantic search™. This is different from lexical
search where search engines look for exact or close matches to words or strings of text.
Semantic search aims to understand the user’s intent and the context of the search terms in
order to improve the accuracy of search. An example would be a structured data entity of “local
business: hairdresser” versus “TG Locks n Lashes”; the latter is a business name, and while it
tells the creative name of the hair salon as a key-word, it does little to help the search engine to
understand what the business does. By using structured data, the website can better help the
search engine understand the context of its information, and thus enable the engine to offer
better search results in the context of the query asked by the search user. Google and Bing are

excellent examples of semantic search engines.

Google uses semantic search technologies to serve relevant information from the Google
Knowledge Graph™ which is a knowledge base used to serve search results in an infobox. This

101. https://www.w3.0rg/TR/sparql11-query/

102. https://5stardata.info/en/

103. https://opendatahandbook.org/

104. https://wikipedia.org/wiki/Semantic_search

105. https://blo; le/products/search/introducing-knowled; ph-thing

134 2022 Web AlImanac by HTTP Archive

https://www.w3.org/TR/sparql11-query/
https://wikipedia.org/wiki/Open_data
https://5stardata.info/en/
https://opendatahandbook.org/
https://wikipedia.org/wiki/Semantic_search
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

Part | Chapter 4: Structured Data

infobox is known as a knowledge panel™, and can be seen in many results. This knowledge box
can be enabled or enhanced by structured data.

Another search result that is made possible by structured data combined with linked data is the
rich result”. These results display richer features in search results, and come in the form of
Events, FAQs, How-tos, Job listings and many more™. Implementing structured data to make

109

web pages eligible for rich results could increase clickthrough rate”. The image below
illustrates how structured data with business details for a Hair Studio allows the search engine

to easily extract and display information about the business, highlighting it and optimizing SEO.

= g hair studio 4

=1 Pk Saoia Cale

TG Hair Studio

48 ik x 112 reviews - 55 - 12 miles
Barber

. @ ®

CALL DIRECTIONS WEBSITE
@ 514Anderson Ave, Cliffside Park, NJ 07010

(D) Open today 9:00 am - 9:00 pm

3] Book an appointment

Maora aboul TG Hair Studio

Figure 4.1. Structured data surfaced in a web search.

106. httpsy google.c 163198

107. ht; devel google h/d d /struct h-gallery
108. https://developers.google.com/search/docs/advanced/structured-data/search-gallery
109. http. A inej l.com/how-imp i data/257775/

2022 Web Almanac by HTTP Archive 135

https://support.google.com/knowledgepanel/answer/9163198
https://developers.google.com/search/docs/advanced/structured-data/search-gallery
https://developers.google.com/search/docs/advanced/structured-data/search-gallery
https://www.searchenginejournal.com/how-important-is-structured-data/257775/
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-surfaced-in-a-web-search.png
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-surfaced-in-a-web-search.png

Part | Chapter 4 : Structured Data

Beyond knowledge panels and web page rich results, structured data can also enable answers
to factual queries™ in search. A factual query search can get multiple signals from different
structured data sources and support more precise results. Here, structured data
implementation, and the technologies that allow for it, provide faster and more reliable access

to information in order to improve user experience.

The combination of SEO importance, higher click-through rates, improved user experience and
machine-readable data being accessible for analysis illustrate significant benefits to
implementing structured data. Understanding these key concepts will help both content
providers and technical personnel who construct sites how to implement better navigation and
understand the function of automated data consumption from web pages.

Structured Data research

For this year’s chapter we were interested in investigating what—if any—academic research has
been carried out in the area of structured data, or if structured data was documented as being

used to assist in development of state-of-the-art technologies and services.

To look for published research, we used academic search tools such as Google Scholar”,
ConnectedPapers™ and University-based citation databases. We not only looked for recent
publications, but also older research that continues to be cited.

The results of our search showed that there is not a lot of highly cited recent work conducted
into generating, managing and building structured web data. However, research on the
application of structured web data (“The Semantic Web"**) like knowledge graphs,
recommendation engines, information retrieval, chatbots and explainable Al has been

conducted in the past twelve months and continues to grow.

Web structured data shares a synergetic relationship with the field of machine learning by
providing consistent data with appropriate Uniform Reference Indicator (URI) vocabulary

114

which can be used to generate machine readable labels™. Our searches and background reading

have shown that structured data has considerably reduced the work and time input to generate

high quality web data for training machine learning algorithms.

On a practical level, we highlight three areas that structured data has improved:

e Knowledge graphs

110. h hdigital. E

111. https://scholar.google.com/

112. https://www.connectedpapers.com/
113. https://en.wikipedia.org/wiki/Semantic_Web

114. ht .google.com/machil ing/crash-course/framing ‘minology

3-q uc

136 2022 Web AlImanac by HTTP Archive

https://gofishdigital.com/blog/answering-questions-structured-data/
https://scholar.google.com/
https://www.connectedpapers.com/
https://en.wikipedia.org/wiki/Semantic_Web
https://developers.google.com/machine-learning/crash-course/framing/ml-terminology

Part | Chapter 4: Structured Data

e Question Answering over Knowledge Graphs

e Explainable Al

Knowledge graphs

Structured web data provides fixed vocabularies between entities and objects as a domain-
specific language, which are generally stored in a RDF format. Knowledge graphs using RDF
have proven to be great tools for querying relationships between entities. As an example,
Wikidated 1.0 is an evolving knowledge graph which uses web structured data to store

115

Wikipedia’s revision history. Its corresponding paper™ talks through the process of aggregating
revisions to a page as a set of additions and deletions of the RDF tuple. The authors have open
sourced their method to convert wikipedia dumps into knowledge graphs. Applied research
carried out by doordash engineering demonstrates that using knowledge graphs can

dramatically improve search performance™.

Question Answering over Knowledge Graphs

Question answering systems enable end users to find answers to their questions. When built
upon a knowledge graph, a question answering system makes it possible to access the rich and

17

structured data stored in knowledge graphs. Query languages such as SPARQL™ are often used

to query the information stored as RDF triples in knowledge graphs.

However, writing SPARQL queries can be tedious and challenging for end-users. Therefore,
natural language questions (NLQs) are an attractive solution that allows overcoming the
numerous complexities of querying knowledge graphs. This work proposes a KG-based
question answering system (KGQAS) that consists of two main phases: 1) an offline phase, and
2) asemantic parsing phase.

While the offline phase aims to convert natural language questions into formal query patterns
in a semi-automated way, the semantic parsing phase leverages machine learning to build a
prediction model. The model is trained on the output of the first phase. It enables predicting the
most appropriate query pattern for a given question. For evaluation, SalzburgerLand KG is used
as a practical use case. It’s a real-world knowledge graph that is built using the schema markup
vocabulary and its primary focus is structured data automation that describes touristic entities

of the region of Salzburg, Austria.

115. https://arxiv.org/abs/2112.05003
116. https://doordash.engineering/2020/12/15/understanding-search-intent-with-better-recall/
117. https://en.wikipedia.org/wiki/SPARQL

2022 Web Almanac by HTTP Archive 137

https://arxiv.org/abs/2112.05003
https://doordash.engineering/2020/12/15/understanding-search-intent-with-better-recall/
https://doordash.engineering/2020/12/15/understanding-search-intent-with-better-recall/
https://en.wikipedia.org/wiki/SPARQL

Part | Chapter 4 : Structured Data

Explainable Al

Explainable Al focuses on explaining decisions of an Al model. Most Al models are not openly
available to the public, and so do not provide rationale for the decisions they make. Owing to
knowledge graphs built on top of semantic web; harder to find relationships between entities
can be found. These are then used as 'ground truth'’ to trace back the results of the model. The
most common approach is to map network inputs or neurons to classes of an ontology or

entities of a web structured data.

References:

o Knowledge graphs: Wikidated 1.0: An Evolving Knowledge Graph Dataset of
Wikidata’s Revision History™

e Question Answering Over Knowledge Graphs: Question Answering Over
Knowledge Graphs: A Case Study in Tourism™

e Explainable Al using structured data: Semantic Web Technologies for Explainable

Machine Learning Models: A Literature Review™

Open source use of Structured Data

Three projects of note that rely heavily on the use of structured data are the following:

e Open Source Metadata Framework (OMF) - The OMF aims to collect data about
Open Source documentation / metadata which are typically stored in a structured
data format that will be used to describe the documentation. The idea is that the
OMF will act as a sophisticated card catalog type of system for the numerous Open

Source documentation projects that exist.

o DBpediais a set of datasets, tools and services related to structured web data. It
contains more than 228 million freely-available entities to date. The main DBpedia
Knowledge Graph encompasses clean data from Wikipedia. DBPedia is available in
all supported Wikipedia languages and averages over 600k file downloads per year.
Some open source tools that are built on top of DBpedia provide data access,

versioning, quality control, ontology visualization and linking infrastructures.

118. https://arxiv.org/abs/2112.05003
119. https://ieeexplore.i t/document/9810255
120. https://www.researchgate.net/profile thias-Pfaff ication,
336578867_Semantic_Web_Technologies_for_Explainable_Machine_Learning_Models_A_Literature_Review/links/5daafb99aéfdccc99d91d120/Semantic-Web-
o . . .

rec for-E ble-Machine-Learning-Models-A-Literature-R pdf

138 2022 Web AlImanac by HTTP Archive

https://arxiv.org/abs/2112.05003
https://arxiv.org/abs/2112.05003
https://ieeexplore.ieee.org/abstract/document/9810255
https://ieeexplore.ieee.org/abstract/document/9810255
https://www.researchgate.net/profile/Matthias-Pfaff/publication/336578867_Semantic_Web_Technologies_for_Explainable_Machine_Learning_Models_A_Literature_Review/links/5daafb99a6fdccc99d91d120/Semantic-Web-Technologies-for-Explainable-Machine-Learning-Models-A-Literature-Review.pdf
https://www.researchgate.net/profile/Matthias-Pfaff/publication/336578867_Semantic_Web_Technologies_for_Explainable_Machine_Learning_Models_A_Literature_Review/links/5daafb99a6fdccc99d91d120/Semantic-Web-Technologies-for-Explainable-Machine-Learning-Models-A-Literature-Review.pdf
https://www.ibiblio.org/osrt/omf/
https://www.dbpedia.org/

Part | Chapter 4: Structured Data

e Wikidata stores structured data from Wikimedia projects like Wikipedia. It is a
document-oriented database, which focuses on storing structured web data.

Use cases

The implementation of structured data is widely beneficial in numerous areas, some of which
will be focused on in this section. It is important to note that many of these areas are

overlapping, such is the nature of linked and structured data.

Data linking

Having structured and linked data, while using identifiers to designate places, events, people,
concepts, etc, the data can be cited by other data sources and therefore make their metadata
descriptions more accessible. This data is then more shareable and reusable.

With data linking, we collect information from different sources to create richer and more
useful data. This is possible thanks to structured data, whose global, unique identifiers allow
machines to read and understand the relationship between different types of data. This has the
use of creating a more connected web of relationships.

Search Engine Optimization & discoverability

Search engine optimization (SEO™) is the area focusing on building the content of a web page so
that it has better results from search engines. Naturally, this is highly important for
discoverability as a successful implementation of SEO may allow for a page to appear higher on
the search engine results page (SERP*). The SERP is where the titles, URLs, and meta

descriptions are displayed from a search query.

By adding structured data to web pages, we can optimize a web page for search engines, as well
as have extra content visible from the SERP. This extra content can come in many forms, some
of which has been discussed previously, namely Knowledge Panels, Rich Snippets and Related
Questions.

Having this added discoverability, enabled by structured data, is essential for increasing traffic
to aweb page from search engines. It follows that businesses and ecommerce pages would find
great value in these technologies, which will be discussed in the following section.

121. https: ia.c jti ‘#How_does_SEO_work
122. http: i iti (2

2022 Web Almanac by HTTP Archive 139

https://www.wikidata.org/
https://www.webopedia.com/definitions/seo/#How_does_SEO_work
https://www.webopedia.com/definitions/serp/

Part | Chapter 4 : Structured Data

Ecommerce & business

The implementation of structured data for ecommerce web pages is incredibly beneficial for
those involved with the business. There are numerous structured data types which are widely
used for these businesses for SEO.

LocalBusiness™ is a structured data type which may return a Google knowledge panel with
details entered in the structured data type during relevant search queries (e.g. “popular
restaurants in Dublin”). This type also may have business hours, different departments within a
business, reviews for the business, which could all be returned from a maps app search query as

well.

Product™, the structured data type, works similarly to LocalBusiness in that it allows for a
search query to return rich results. These results can include price, availability, reviews, ratings,
and even images in the search results. These added elements can make the product far more
likely to receive attention from the search. Product attributes can help link products together

and better respond to search queries, increasing discoverability.

These are just a couple of examples of use cases for structured data in ecommerce, but there

125

are many more structured data types™ that an ecommerce page can benefit from implementing.

Ayearinreview

Structured data is underpinned by formats and standards that describe a meta-level schema
into which publishers can fit and present data in a pre-defined manner. RDFa, OpenGraph,
JSON-LD and other established formats have been used in the analysis for this chapter.

123. https://developers.google.com/search/docs/advanced/structured-data/local-business
124. https://developers.google.com/search/docs/advanced/structured-data/product
125. https://developers.google.com/search/docs/advanced/ecommerce/include-structured-data-relevant-to-ecommerce

140 2022 Web AlImanac by HTTP Archive

https://developers.google.com/search/docs/advanced/structured-data/local-business
https://developers.google.com/search/docs/advanced/structured-data/product
https://developers.google.com/search/docs/advanced/ecommerce/include-structured-data-relevant-to-ecommerce

Part | Chapter 4: Structured Data

Structured data usage
Web Almanac 2022: Structured Data

desktop [l mobile

RDFa 62%
Open Graph 599%,
% Twitter 40%
:‘5 JSON-LD 37%
] .
MlCrOdata [— o)

§ 25%
E Facebook |ms 8%
§ Dublin Core | 1%
@ Microformats 1%

microformats2 0%

0% 25% 50% 75% 100%

Percent of pages

Figure 4.2. Structured data types.

RDFa and Open Graph remain in the majority with 62% and 57% of mobile pages, respectively.

Structured data types are seen consistently across mobile and desktop pages, with

Microformats and microformats2 differing the most from other structured data types we

examined in this chapter. Microformats are 86% as prominent on mobile pages, whereas

microformats2 are 171% as prominent on mobile pages. These two structured data types make

up a small percentage of those found in our set.

2022 Web Almanac by HTTP Archive

141

https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-types.png
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-types.png

Part | Chapter 4 : Structured Data

Structured data usage by year
Web Almanac 2022: Structured Data (mobile)

2021 [2022

RDFa I— 62%
Open Graph [——————— 59%
Twitter 40%
JSON-LD —— 37%
Microdata — 25%

Facebook F 8%

Percentile

Dublin Core r 1%
Microformats 1%
microformats2 r 0%
0% 20% 40% 60% 80%

JavaScript requests per page

Figure 4.3. Structured data usage by year on mobile.

A general increase in these widely-used structured data types can be seen, including Twitter
meta tags (which has increased from 37% to 40%) and JSON-LD (which has increased coverage
from 34% overall in 2021 to 37% overall in 2022). There is a slight decrease in usage for some
of the less prevalent structured data types such as Microdata, Facebook meta tags, Dublin Core

and Microformats. Desktop movements were very similar.

The below table lists the major changes to structured data formats in the last year. Only types

with changes have been listed.

142 2022 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-usage-by-year.png
https://almanac.httparchive.org/static/images/2022/structured-data/structured-data-usage-by-year.png

Part | Chapter 4: Structured Data

Data type Change

Although there are no changes in the base format of RDFa, version 3 of the Data Catalog
Vocabulary (DCAT) contained a significant update. DCAT is an “RDF vocabulary designed to
facilitate interoperability between data catalogs published on the Web”. This is significant due to
the increased availability of open datasets on the web. Being able to describe the entire contents
of a dataset greatly increases the discoverability, and thus usefulness, of a public dataset and
mabkes federated search and distribution more likely.

RDFa References:

e DCAT: https://www.w3.0rg/TR/2022/WD-vocab-dcat-3-20220510
o Google dataset search engine™

e Google dataset structured data format guide™”

Updates and additions in the past year were minor. Of these, most were related to maintenance
and minor expansion of context, for example “adding OnlineBusiness as a subtype of
Organization and OnlineStore as a subtype of OnlineBusiness”.

JSON-LD References:

e https://schema.org/docs/releases.html

Figure 4.4. Changes between 2021 and 2022 in data type formats.

Overall there has been little change in the definitions of the major data types as the table
outlines, however some formats have been advanced in specific domains.

Let’s delve a little deeper into each type.

126. https://datasetsearch.research.google.com/
127. https://developers.google.com/search/docs/advanced/structured-data/dataset

2022 Web Almanac by HTTP Archive 143

https://www.w3.org/TR/2022/WD-vocab-dcat-3-20220510
https://datasetsearch.research.google.com/
https://developers.google.com/search/docs/advanced/structured-data/dataset
https://schema.org/docs/releases.html

Part | Chapter 4 : Structured Data

RDFa

RDFa usage by year
Web Almanac 2022: Structured Data (mobile)

2021 [2022

foaf:image 0.81%

foaf:document | — 0.30%
SO O s 0.20%
schema:webpage | 0.12%
iMage mmm 0.10%
OGWEDSHtE s (0.08%
listitem s 0.08%
breadcrumblist juem 0.07%
webpage \mm 0.04%
person i 0.03%

schema:article | (.03%

RDFa type

skos:concept ' 0.03%

v:breaderumb | 0.03%

sioc:useraccount |y (0.02%

0.00% 0.25% 0.50% 0.75% 1.00%

Percent of pages

Figure 4.5. RDFa usage by year on mobile.

When evaluating the types of RDFa, foaf:image remains present on more pages than any
other type, though it has shown a decrease in the percent of pages in our set since 2021. This
applies to the next two types, foaf:document and sioc:item,with small decreasesin
usage. Many of the other types show a slight increase in usage, as RDFa has seen as a whole.

144 2022 Web AlImanac by HTTP Archive

https://almanac.httparchive.org/static/images/2022/structured-d